Barion Pixel A lineáris függvény | mateking
 

Itt mindent megtudhatsz a lineáris függvényekről, megnézzük, mi az a meredekség és a tengelymetszet. Két pont alapján felírjuk a lineáris függvény hozzárendelési szabályát, megnézzük a lineáris függvények zérushelyét és tengelymetszetét, és még sok izgalmas dolgot.

A képsor tartalma

A lineáris függvények nem túl izgalmas részei a matematikának. De hát néha velük is kell foglalkozni, úgyhogy nézzünk meg néhányat. Ez itt egy lineáris függvény. És két dolgot érdemes róla tudni. Az egyik, hogy milyen meredeken megy… Ezt meredekségnek hívjuk, és így jön ki: A másik dolog, amit érdemes tudni, hogy hol metszi a függvény grafikonja az y tengelyt. Ezt úgy hívjuk, hogy tengelymetszet, és a jele b. És íme, itt a lineáris függvények képlete: Most pedig nézzük, mire használhatnánk ezeket a lineáris függvényeket, jóra vagy rosszra… Egy lineáris függvény a 2-höz 3-at, az 5-höz pedig 2-t rendel. Adjuk meg a függvény hozzárendelési szabályát. A függvény az x tengelyen lévő számokhoz rendeli hozzá… az y tengelyen lévő számokat. Íme, itt is van a függvény grafikonja, ami egy egyenes vonal. Számoljuk ki a meredekségét. Lássuk, mennyit megy fölfele… Semennyit, mert ez most lefele megy. Előre pedig 3-at. A meredekség tehát megvolna. Most pedig jöhet a tengelymetszet. Hát, ez valahol 3 és 4 között van. Ennél azért egy picit pontosabban kéne tudnunk… Itt van a függvény képlete. És azt már tudjuk, hogy a meredekség -1/3. Úgy tudjuk kiszámolni b-t, hogy veszünk egy pontot a függvény grafikonján… és a koordinátáit behelyettesítjük a függvénybe. De mi van akkor, ha egy másik pontot választunk? Mondjuk például ezt… Mindig ugyanaz jön ki. Hát, ezzel megvolnánk. Így elsőre nehéz elhinni, hogy ezek a lineáris függvények jók is valamire. Pedig azért néhány dologra lehet őket használni. Itt van például ez a vonat, ami reggel 6-kor indul… és 8 óráig megtesz 300 kilométert. Menet közben nem állt meg sehol, és végig állandó sebességgel haladt. A vonat által megtett utat ez a lineáris függvény írja le. A 300 kilométeres utat… 2 óra alatt tette meg. A vonat sebessége éppen a függvény meredeksége. Hogyha mondjuk 8 és 11 óra között a vonat 100 km/h sebességgel halad tovább… Akkor egy olyan függvényt kell rajzolnunk, aminek a meredeksége 100. Ezt a függvényt például arra tudjuk használni, hogy megmondja nekünk, mikor hol van épp a vonat. Ha kíváncsiak vagyunk például arra, hogy 10 óráig mekkora utat tett meg… Ekkorát. Itt jön aztán egy másik vonatos történet. Erről a vonatról annyit lehet tudni, hogy reggel 8-kor éppen 200 kilométer utat tett már meg, 11 órakor pedig 400-at. A vonat átlagsebessége útja során végig állandó. Hánykor indult a vonat és mekkora utat tesz meg 14 óráig? A vonat 8 óráig 200 kilométert tett meg… 11 óráig pedig 400-at. A vonat átlagsebessége állandó, ezért a megtett utat egy lineáris függvény írja le. Az remekül látszik a rajzon, hogy a vonat 5-kor indult. Az már kevésbé, hogy hol lesz 14 órakor. Persze készíthetnénk egy nagyobb rajzot is… De a matematika nem igazán rajzok készítésével foglalkozik. Az egy másik tantárgy. Lássuk inkább azt a függvényt, amely megmondja nekünk, hol tart épp a vonat. Kezdjük azzal, hogy, mekkora a meredekség… A b-t most is úgy kapjuk meg, hogy veszünk egy pontot a függvény grafikonján… és a koordinátáit behelyettesítjük a függvénybe. Íme, itt is van. És, hogy hol lesz a vonat 14 órakor?

Egy lépésre vagy attól, hogy a matek melléd álljon és ne eléd.
  • A mateking miatt sikerült az érettségi és az összes egyetemi matekos tárgyam.

    Míra, 21
  • Jó árban van és hihetetlenül világos a magyarázat és annyiszor lehet visszatérni az egyes lépésekre, ahányszor arra csak szükség van a megértéshez.

    Lili, 22
  • Otthonról elérhető és olcsóbb, mint egy magántanár és akkor használom, amikor akarom.

    Milán, 19
  • Sokkal jobb, mint bármelyik egyetemi előadásom.

    Dani, 20
BelépekvagyRegisztrálok Back arrow Ugrás az
összeshez