Számtani és mértani sorozatok

1. Egy cég bevétele az első évben 100 millió dollár volt, és azóta minden évben 20 millió dollárral nő. Mekkora lesz a bevétel a hatodik évben? Mekkora a cég árbevétele a hat év alatt összesen?

Megnézem, hogyan kell megoldani


2.

a) Egy cég bevétele az első évben 10 millió dollár volt, és azóta minden évben 20%-kal nő. Mekkora lesz a bevétel a hatodik évben? Mekkora a cég árbevétele a hat év alatt összesen?

b) Egy sorozatról tudjuk, hogy $a_8=2$ és $a_7=162$. Mennyi $a_10$, ha számtani sorozatról van szó, illetve ha mértani sorozatról van szó.

Megnézem, hogyan kell megoldani


3. Egy sorozatról tudjuk, hogy $a_8=2$ és $a_7=162$. Mennyi $a_10$, ha

a) számtani sorozatról van szó.

b) mértani sorozatról van szó.

Megnézem, hogyan kell megoldani


4. Egy sorozatról tudjuk, hogy $a_1=-7$ és $a_8=896$.

a) Mennyi az első 10 tag összege, ha számtani, illetve ha mértani sorozatról van szó?

b) Mennyi a második 10 tag összege, ha számtani, illetve ha mértani sorozatról van szó?

Megnézem, hogyan kell megoldani


5. Egy sorozatról tudjuk, hogy $a_1=5$ és $a_6=1215$. Mennyi lehet $n$ értéke, ha az első $n$ tag összege 5890-nél kisebb?

Megnézem, hogyan kell megoldani


6. Egy számtani sorozatról tudjuk, hogy az első 5 tag összege 468, az első 6 tag összege pedig 9843. Mennyi az első hét tag összege?

Megnézem, hogyan kell megoldani


7. Egy mértani sorozatról tudjuk, hogy az első tagja 3, az első 5 tag összege 468, az első 6 tag összege pedig 9843. Mennyi az első hét tag összege?

Megnézem, hogyan kell megoldani


8. Egy számtani sorozat második tagja 3. E sorozat első tíz tagjának összege harmad akkora, mint a következő tíz tag összege. Határozza meg a sorozat első tagját és differenciáját!

Megnézem, hogyan kell megoldani


9. Egy számtani sorozat első 10 tagjának az összege feleakkora, mint a következő tíz tag összege. Az első 15 tag összege 375. Határozza meg a sorozat első tagját!

Megnézem, hogyan kell megoldani


10. Egy számtani sorozat első tagja 12. Az első tíz tag összege négyszer akkora, mint közülük a páros indexű tagok összege. Mekkora a sorozat differenciája?

Megnézem, hogyan kell megoldani


11. Egy mértani sorozat 12. tagja 36-tal nagyobb a 13.-nál. Ezen két tag szorzata 160. Mekkora a sorozat kvóciense?

Megnézem, hogyan kell megoldani


12. Egy mértani sorozat első három tagjának az összege 35. Ha a harmadik számot 5-tel csökkentjük, egy számtani sorozat első három tagjához jutunk. Határozza meg a mértani sorozatot!

Megnézem, hogyan kell megoldani


13. Egy mértani sorozat első 4 tagjának az összege 105, az 5., 6., 7., és 8. tag összege 1680. Melyik ez a sorozat?

Megnézem, hogyan kell megoldani


14. Egy mértani sorozat első három tagjának a szorzata 216. Ha a harmadik számot 3-mal csökkentjük, egy számtani sorozat első három elemét kapjuk. Határozza meg a mértani sorozatot!

Megnézem, hogyan kell megoldani


15. Egy számtani sorozat első három tagjának az összege 24. ha az első taghoz 1-et, a másodikhoz 2-öt, a harmadikhoz 35-öt adunk, egy mértani sorozat szomszédos tagjait kapjuk. Határozza meg a számtani sorozatot!

Megnézem, hogyan kell megoldani


16. Egy mértani sorozat első három tagjának az összege 26. Ha az első taghoz 1-et, a másodikhoz 6-ot, a harmadikhoz 3-at adunk, egy számtani sorozat egymást követő tagjait kapjuk. Határozza meg a mértani sorozatot!

Megnézem, hogyan kell megoldani


17. Egy számtani sorozat első négy tagjához rendre 5-öt, 6-ot, és 15-öt adva egy mértani sorozat egymást követő tagjait kapjuk. Határozza meg a mértani sorozat kvóciensét!

Megnézem, hogyan kell megoldani


18. Egy számtani sorozat első három tagjának az összege 36. Ezen tagokhoz rendre 16-ot, 12-öt, és 10-et adva egy mértani sorozat három egymást követő tagját kapjuk. Határozza meg a számtani sorozatot!

Megnézem, hogyan kell megoldani


19. Három szám egy mértani sorozat három egymást követő tagja. Ha a 2. számhoz 8-at adunk, egy számtani sorozat három szomszédos tagját kapjuk. Ha az így kapott sorozat 3. tagjához 64-et adunk, egy új mértani sorozat három szomszédos tagját kapjuk. Határozza meg az eredeti három számot!

Megnézem, hogyan kell megoldani


20. Egy számtani sorozat első 3 tagjának az összege 30-cal kisebb, mint a következő 3 tag összege. Az első 6 tag összege 60. Melyik ez a sorozat?

Megnézem, hogyan kell megoldani


21. Egy számtani sorozat első négy tagjához rendre 54-et, 39-et, 28-at, és 20-at adva egy mértani sorozat egymást követő tagjait kapjuk. Határozza meg a mértani sorozat kvóciensét!

Megnézem, hogyan kell megoldani


22. Egy számtani sorozat 2. tagja 7, e sorozat első, harmadik és nyolcadik tagja egy mértani sorozat három egymást követő tagja. Határozza meg a mértani sorozat hányadosát!

Megnézem, hogyan kell megoldani


23. Egy sorozatról tudjuk, hogy $a_10 + 2 a_8 = 3 a_9$ és $a_4 = 24$. Mennyi $a_7$, ha 

a) számtani sorozatról van szó.

b) mértani sorozatról van szó.

Megnézem, hogyan kell megoldani


24.

a) Egy cég árbevétele az első évben 100 ezer dollár volt és azóta minden évben 20 ezer dollárral nő. Mekkora lesz az árbevétel a hatodik évben?

b) Egy cég árbevétele az első évben 100 ezer dollár volt és azóta minden évben 2%-kal nő. Mekkora lesz az árbevétel a hatodik évben?

c) Egy sorozatról tudjuk, hogy $a_8 = 2$ és $a_7=162$. Mennyi $a_10$, ha számtani sorozatról, illetve ha mértani sorozatról van szó.

Megnézem, hogyan kell megoldani

A témakör tartalma

Itt szuper-érthetően megnézheted, hogy mi az a számtani sorozat és a mértani sorozat, mit jelent a differencia és a hányasos, hogyan kell egy sorozat n-edik tagját kiszámítani. Megnézzük a szémtani sorozat első n tagjának összegére vonatkozó képletet is, aztán jön a mértani sorozt első n tag összegének képlete. Rengeteg feladat számtani sorozattal és mértani sorozattal lépésről lépésre megoldva.



FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

A számtani sorozat
Itt röviden és szuper-érthetően elmeséljük, hogy mik azok a számtani sorozatok, mire lehet őket használni és megoldunk néhány számtani sorozatos feladatot. Megnézzük a számatani sorozatok összegképletét, a sorozat általános tagját, és tulajdonságait. Egy cég árbevétele az első évben 100 ezer dollár volt és azóta minden évben 20 ezer dollárral nő. Mekkora lesz az árbevétel a hatodik évben? Nézzük meg egyesével az éves árbevételeket: A cég éves árbevételei egy sorozatot alkotnak. Egy olyan sorozatot, ahol minden tag pontosan 20-szal nagyobb az előző tagnál. Azokat a sorozatokat, ahol minden tag pontosan ugyanannyival nagyobb az előző tagnál, számtani sorozatoknak nevezzük. A sorozat differenciája az a szám amennyivel mindegyik tag nagyobb az előzőnél. Ha tudjuk, hogy mennyi a sorozat első tagja és a differencia, akkor bármelyik tagot ki tudjuk számolni. A hatodik évben az árbevétel: Most próbáljuk meg kideríteni, hogy mekkora a cég árbevétele a hat év alatt összesen. Nos, úgy néz ki 900 ezer dollár az árbevétel a hat év alatt összesen. A számtani sorozat első n darab tagjának összege:
A mértani sorozat
Lássuk, hogy mik azok a mértani sorozatok, mire lehet őket használni és megoldunk néhány mértani sorozatos feladatot. Megnézzük a mértani sorozatok összegképletét, a sorozat általános tagját, és tulajdonságait. Itt jön egy másik történet. A számtani sorozat: Egy cég árbevétele az első évben 100 ezer dollár volt és azóta minden évben 2%-kal nő. Mekkora lesz az árbevétel a hatodik évben? Azokat a sorozatokat, ahol minden tag pontosan q-szor annyi, mint az előző tag, mértani sorozatnak nevezzük. A hatodik évben az árbevétel: Ha megint kíváncsiak vagyunk rá, hogy mekkora volt az árbevétel a hat év alatt összesen, akkor most a mértani sorozat összegképletére lesz szükség. Íme a mértani sorozat összegképlete: Az első hat év összes árbevétele ez alapján: A mértani sorozat: Egy sorozatról tudjuk, hogy a8 = 2 és a7 = 162. Mennyi a10, ha a) számtani sorozatról van szó. b) mértani sorozatról van szó.