Mátrixok

1. Végezzük el az alábbi műveleteket.

a) \( 3 \cdot \begin{pmatrix} 5 & 7 & -2 \\ 2 & 2 & 1 \end{pmatrix} \)

b) \( \begin{pmatrix} 2 & 4 & 7 \\ 1 & 5 & 3 \end{pmatrix} + \begin{pmatrix} 3 & 4 \\ 1 & 5 \end{pmatrix}  \)

c) \( \begin{pmatrix} 3 & 4 \\ 1 & 5 \end{pmatrix}  \cdot \begin{pmatrix} 2 & 4 & 7 \\ 1 & 5 & 3 \end{pmatrix} \)

d)  \( \begin{pmatrix} 2 & 4 & 7 \\ 1 & 5 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 \\ 1 & 5 \end{pmatrix} \)

Megnézem, hogyan kell megoldani


2. Adjuk meg az alábbi mátrixok transzponált mátrixait!

a) \( A=\begin{pmatrix} 2 & 3 & 5 \\ 1 & 4 & 1 \\ 2 & 5 & 7 \end{pmatrix} \)

b) \( B=\begin{pmatrix} 5 & 7 & -2 \\ 2 & 2 & 1 \end{pmatrix} \)

c) \( C=\begin{pmatrix} 5 & 1 & 7 \\ 1 & 4 & 2 \\ 7 & 2 & 6 \end{pmatrix} \)

Megnézem, hogyan kell megoldani


3. Végezzük el az alábbi műveleteket.

a) \( 3\cdot \begin{pmatrix} 1 \\ 3  \\ 5 \end{pmatrix} \)

b) \( \begin{pmatrix} 2 \\ 4  \\ -1 \end{pmatrix} + \begin{pmatrix} 4 \\ 2  \\ 7 \end{pmatrix} \)

c)  \( \begin{pmatrix} 3 & 2 & 5 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1  \\ 2 \end{pmatrix} \)

d)  \( \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 4 & 1  & 2 \end{pmatrix} \)

Megnézem, hogyan kell megoldani


4. Számítsuk ki az alábbi két vektor által bezárt szöget.

\(  \underline{a}=\begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}  \quad \underline{b}=\begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}  \)

Megnézem, hogyan kell megoldani


5. Van itt néhány vektor, és végezzük el velük a következő műveleteket.

\( A=\begin{pmatrix} 1 & 3 & 1 \\ 2 & 0 & 4 \\ 3 & 1 & 7 \end{pmatrix}  \quad \underline{b}=\begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}  \)

\( C=\begin{pmatrix} 2 & 1 & 7 \\ 3 & 1 & 8  \end{pmatrix} \quad \underline{d}=\begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \)

\( E=< 2 \; 5 \; 7 > \)

a) \( A \cdot \underline{b} \)

b) \( A \cdot C \)

c) \( A \cdot C^* \)

d) \( \underline{b^*} \cdot \underline{d} \)

e) \( \underline{b} \cdot \underline{d^*} \)

f) \( A^2 \)

Megnézem, hogyan kell megoldani

A témakör tartalma

Szuper-érthetően elmagyarázzuk neked, hogy mik azok a Mátrixok. Sor, Oszlop, Mátrix műveletek, Skaláris szorzás, Mátrix összeadás, Mátrix szorzás, Kommutativitás, Asszociativitás. Természetesen a lineáris algebrában vannak speciális tulajdonságokkal rendelkező mátrixok. Megnézzük azt is, hogy mit is tudnak ezek.  Kvadratikus mátrix, Négyzetes mátrix, Diagonális mátrix, Egységmátrix, Transzponált, Szimmetrikus mátrix. Szuper-érthetően elmagyarázzuk neked azt is, hogy mik azok a vektorok. Geometriai vektorok, Vektortér, Vektorműveletek, Skalárral való szorzás, Vektorok összeadása, Vektorok szorzása. Egyszerű példákon keresztül elmeséljük neked, hogyan kell kiszámolni két vektor által bezárt szöget. Skaláris szorzat, Két vektor közti szög, Vektorok hossza.Megtanítjuk neked, hogy hogyan kell kiszámolni bizonyos mátrix műveleteket.  Mátrixok, Sor, Oszlop, Mátrix műveletek, Skalár szorzat, Összeadás, Szorzás, Kommutativitás, Asszociativitás, Vektorok, Vektorműveletek, Mátrix műveletek, Skaláris szorzat, Vektoriális szorzat.



Mátrixok

A mátrixok teljesen ártalmatlan teremtményei a matematikának.

Egy -as mátrix tulajdonképpen nem más, mint egy táblázat, ami n darab sorból és k darab oszlopból áll.

A mátrixokat az ABC nagy betűivel jelöljük. Itt van például ez:

Ez egy (2X3)-as mátrix.

A mátrixok elemeit kettős indexezéssel látjuk el. Az elemeknek van egy sorindexük,

és egy oszlopindexük.

A mátrixok elemeit kettős indexezéssel látjuk el. Az elemeknek van egy sorindexük,

és egy oszlopindexük.

Egy -as mátrix, ami  n  darab sorból és  k  darab oszlopból áll,

tehát valahogy így néz ki:

A mátrixok marhára hasznosak számunkra, erről fog szólni lényegében az egész lineáris algebra témakör.

Mielőtt azonban hasznosságukról személyesen is megbizonyosodhatnánk, előbb nézzük meg milyen műveleteket végezhetünk velük.

1.SKALÁRSZOROS

A skalár nem egy betegség, azt jelenti, hogy valamilyen szám, legtöbbször valós szám.

2.ÖSSZEADÁS

Egy -as mátrixhoz csak egy másik -as mátrixot adhatunk hozzá.

3.SZORZÁS

Na ez a legizgalmasabb.

Egy -as mátrixszal csak egy -es mátrixot szorozhatunk.

A szorzat mátrixnak annyi sora lesz, mint A-nak és annyi oszlopa, mint B-nek, elemei pedig úgy keletkeznek, hogy az A egyik sorát szorozzuk B-nek egy oszlopával

Jön a trükk, tudományos nevén Falk-séma. Ennek az a lényege, hogy a mátrixokat sarkosan helyezzük el, valahogy így:

Kész a szorzat!

A mátrixok szorzásának egyik érdekes tulajdonsága,

hogy nem kommutatív.

Ha például megpróbáljuk ezt a szorzást fordítva elvégezni,

kiderül, hogy nem is lehet.


Néhány speciális mátrix

Ismerkedjünk meg néhány speciális mátrixfajtával.

KVADRATIKUS MÁTRIX 

négyzetes mátrix vagyis ugyanannyi sora van, mint oszlopa

példa:

DIAGONÁLIS MÁTRIX

olyan kvadratikus mátrix, aminek a főátlóján kívüli elemek nullák

példa:

A diagonális mátrixoknak tehát csak a főátlója érdekes, mivel az összes többi elem nulla.

Ezért aztán vannak akik csak a főátló elemeket írják le. Ez a fura jel

valójában egy diagonális mátrix

EGYSÉGMÁTRIX

olyan mátrix, ami azt tudja, hogy bármely  mátrixra  

az egységmátrixok olyan diagonális mátrixok, aminek minden főátló-eleme egy

INVERZ MÁTRIX

jele , és ez egy olyan mátrix, ami azt tudja, hogy

  (jobb inverz)         (bal inverz)

Később látni fogjuk, hogy nem is olyan egyszerű elővarázsolni egy mátrix inverzét.

Ez az inverz dolog valós számoknál sokkal könnyebb, ott ugyanis

  inverze      mert ugye 

  inverze      mert ugye 

TRANSZPONÁLT

a mátrix sorainak és oszlopainak a felcserélése, jele  vagy                                

SOR OSZLOP  OSZLOP SOR

példa:

        vagy       

Azokat a mátrixokat, amelyek transzponáltja önmaga szimmetrikus mátrixnak nevezzük.

Itt van például egy szimmetrikus mátrix:

Mindezek jelenleg nem tűnnek túl izgalmasnak, de hamarosan majd elérkezik az idő, amikor kelleni fognak.

Most viszont jöjjenek a vektorok!


Vektorok

Azokat a mátrixokat, amiknek csak egyetlen oszlopuk van, vektoroknak nevezzük.

A vektorokat az abc kis betűivel jelöljük és aláhúzzuk őket.

Itt van például két vektor:

Az  vektor -es vektor, a  pedig -es, de a  megemlítése teljesen felesleges, hiszen éppen azért nevezzük őket vektoroknak, mert csak egyetlen oszlopuk van.

Bőven elegendő tehát csak arról említést tenni, hogy hány darab számot tartalmaz maga a vektor. Ezeket a számokat a vektor koordinátáinak nevezzük.

Megnyugtató, hogy amit a geometriában vektornak tekintünk,

és amit az imént vektorként definiáltunk megfeleltethetők egymásnak.

Ha ugyanis veszünk mondjuk a térben három egyenest úgy,

hogy egymásra merőlegesek legyenek majd pedig

ellátjuk őket egy skálázással, akkor a geometriai vektorok

egyértelműen megfeleltethetők számhármasoknak.

Vagyis amikor vektorokról beszélünk, egyszerre gondolhatunk

-es mátrixokra és  geometriai alakzatokra.

Lássuk milyen műveleteket tudunk vektorokkal végezni.

MŰVELETEK VEKTOROKKAL

1. SKALÁRSZOROS 

példa:

2. ÖSSZEADÁS          

példa:

TULAJDONSÁGOK:

kommutatív:

asszociatív:

3. SZORZÁS 

skaláris szorzat:                                       diadikus szorzat:

TULAJDONSÁGOK:

kommutatív:

nem asszociatív:

 és  

     és

a skaláris szorzat:

diadikus szorzat:

TULAJDONSÁGOK:

nem kommutatív

nem asszociatív

példa:

 és

a diadikus szorzat:

A kétféle szorzás közül a skaláris szorzat

nekünk sokkal hasznosabb lesz, így hát

elbúcsúzunk a diadikus szorzattól.

A skaláris szorzatra pedig bevezetünk

egy egyszerű jelölést.

Ezzel megspóroltunk néhány *-ot.

De lássuk mire jó még a skaláris szorzat.


Vektorok által bezárt szög kiszámolása

A vektorok skaláris szorzása azon kívül, hogy remek szórakozás, arra is jó, hogy kiszámoljuk, két vektor mekkora szöget zár be egymással.

Van ugyanis a skaláris szorzásnak egy másik képlete is:

ahol  a két vektor által bezárt szög,

 vagyis az  vektor hossza

 vagyis a  vektor hossza

A vektorok közti szöget úgy tudjuk kiszámolni, ha mindkét módon felírjuk a skaláris szorzatukat.

Itt van például

A skaláris szorzat a korábbi képlettel:

A skaláris szorzat az új képlettel:


FELADAT | Műveletek mátrixokkal és vektorokkal

Van itt néhány mátrix és vektor és el kéne végezni velük pár műveletet.

Hát menjünk szépen sorban.

Ezzel van egy kis probléma.  nem elvégezhető.

Mátrixok hatványozására sajnos nincsen semmilyen trükk, tehát ha ki kell számolnunk ennek a mátrixnak a négyzetét, akkor négyzetre emelést úgy tudjuk elvégezni, hogy megszorozzuk önmagával.

Ha mondjuk a negyedik hatványára lenne szükség, akkor az bizony elég sokáig tart.

De szerencsére csak a négyzete kell.

Már csak  van hátra. Ezzel marhanagy mázlink van,  ugyanis egy diagonális mátrix.

A diagonális mátrixokat pedig könnyű hatványozni, egyszerűen a főátló elemeit külön-külön hatványozzuk.

Ez a módszer sajnos csak diagonális mátrixokra működik, de ott szuperül.

Ha négyszer egymás után összeszoroznánk, persze akkor is ugyanez jönne ki,

csak kicsit lassabban, akinek van kedve próbálja ki és nézze meg.