Barion Pixel Vektorok | mateking
 

Diszkrét matematika epizód tartalma:

Szuper-érthetően elmagyarázzuk neked, hogy mik azok a vektorok. | Geometriai vektorok, Vektortér, Vektorműveletek, Skalárral való szorzás, Vektorok összeadása, Vektorok szorzása. |

A képsor tartalma

Azokat a mátrixokat, amiknek csak egyetlen oszlopuk van, vektoroknak nevezzük.

A vektorokat az abc kis betűivel jelöljük és aláhúzzuk őket.

Itt van például két vektor:

Az vektor -es vektor, a pedig -es, de a megemlítése teljesen felesleges, hiszen éppen azért nevezzük őket vektoroknak, mert csak egyetlen oszlopuk van.

Bőven elegendő tehát csak arról említést tenni, hogy hány darab számot tartalmaz maga a vektor. Ezeket a számokat a vektor koordinátáinak nevezzük.

Megnyugtató, hogy amit a geometriában vektornak tekintünk,

és amit az imént vektorként definiáltunk megfeleltethetők egymásnak.

Ha ugyanis veszünk mondjuk a térben három egyenest úgy,

hogy egymásra merőlegesek legyenek majd pedig

ellátjuk őket egy skálázással, akkor a geometriai vektorok

egyértelműen megfeleltethetők számhármasoknak.

Vagyis amikor vektorokról beszélünk, egyszerre gondolhatunk

-es mátrixokra és geometriai alakzatokra.

Lássuk milyen műveleteket tudunk vektorokkal végezni.

MŰVELETEK VEKTOROKKAL

1. SKALÁRSZOROS

példa:

2. ÖSSZEADÁS

példa:

TULAJDONSÁGOK:

kommutatív:

asszociatív:

3. SZORZÁS

skaláris szorzat: diadikus szorzat:

TULAJDONSÁGOK:

kommutatív:

nem asszociatív:

és

és

a skaláris szorzat:

diadikus szorzat:

TULAJDONSÁGOK:

nem kommutatív

nem asszociatív

példa:

és

a diadikus szorzat:

A kétféle szorzás közül a skaláris szorzat

nekünk sokkal hasznosabb lesz, így hát

elbúcsúzunk a diadikus szorzattól.

A skaláris szorzatra pedig bevezetünk

egy egyszerű jelölést.

Ezzel megspóroltunk néhány *-ot.

De lássuk mire jó még a skaláris szorzat.

Egy lépésre vagy attól, hogy a matek melléd álljon és ne eléd.
  • Konkrétan a hetedikes öcsém megtanult deriválni, ez elég bizonyíték, hogy az oldal érthetően magyaráz.

    Gábor, 18
  • Ez a legjobban áttekinthető, értelmezhető, használható és a legolcsóbb tanulási lehetőség.

    Eszter, 23
  • Olyan weboldal, ami még egy vak lovat is megtanítana integrálni.

    Petra, 26
  • Zseniális bármilyen matek ismeret elsajátításához.

    Ákos, 19
BelépekvagyRegisztrálok Back arrow Ugrás az
összeshez