Diszkrét matematika epizód tartalma:
Itt egyszerű példákon keresztül elmeséljük neked, hogyan kell megoldani lineáris egyenletrendszereket elemi bázistranszformációval és Gauss eliminációval. | Lineáris egyenletrendszerek, Lineáris egyenletrendszerek megoldása, Együtthatómátrix, Kibővített együtthatómátrix, Gauss elimináció, Gauss algoritmus, Elemi bázistranszformáció, Elemi bázistranszformáció feladatok, Pivot elem, Generáló elem, Általános megoldás. |
Itt jön egy egyenletrendszer.
Érdemes generáló elemet úgy választani, hogy a sorában és oszlopában jó sok nulla legyen.
Ennek előnyeit pillanatokon belül élvezhetjük.
Legyen mondjuk ez.
Hát ugye az nincs
az nincs és sincs
Érdemes generáló elemet úgy választani, hogy a sorában és oszlopában jó sok nulla legyen.
Ennek előnyeit pillanatokon belül élvezhetjük.
Legyen mondjuk ez.
A nulla miatt ebben az oszlopban minden elemből nullát vonunk ki,
tehát az egész oszlop marad.
Ezért érdemes úgy választani generáló elemet, hogy a sorában
és oszlopában jó sok nulla legyen.
Hát ezért éri meg így választani.
A nullák megkönnyítik az életünket.
Kiszámolni csak ezeket kell.
A nulla miatt ebben az oszlopban mindenki marad
Sőt, ebben a sorban is mindenki marad.
És ebben a sorban is.
Alig kell valamit számolni.
Ezt az egyet kell kiszámolni:
Diszkrét matematika epizód.