Középiskolai matek képsor tartalma:

Itt röviden és szuper-érthetően elmeséljük neked, hogy mi az a logaritmus és hogyan kell megoldani logaritmusos egyenleteket. A logaritmus fogalma, Logaritmus azonosságok, Logaritmusos egyenletek, Hogyan oldjunk meg logaritmusos egyenleteket?

A képsor tartalma

Egy baktériumtenyészet generációs ideje 25 perc, ami azt jelenti, hogy ennyi idő alatt duplázódik meg a baktériumok száma a tenyészetben. Kezdetben 5 milligramm baktérium volt a tenyészetben. Hány perc múlva lesz a tenyészetben 30 milligramm baktérium?

Készítsünk erről egy rajzot.

Azt, hogy éppen hány milligramm baktériumunk van, ezzel a kis képlettel kapjuk meg:

A történet végén 30 milligramm baktériumunk van.

Ezt az egyenletet kéne valahogy megoldanunk.

Valahogy így…

Ehhez az kell, hogy a 2x önállóan álljon. Ne legyen megszorozva senkivel.

Most jön a számológép, megnyomjuk rajta azokat a gombokat, hogy log, aztán 2 aztán 6.

Ha a világnak ahhoz a szerencsétlenebbik feléhez tartozunk, akiknek a számológépén csak sima log van…

Nos, akkor egy kis trükkre lesz szükség.

De így is kijön.

Itt az x=2,585 nem azt jelenti, hogy ennyi perc telt el…

Azt jelenti, hogy x=2,585 generációnyi idő telt el.

64,625 perc

Egy másik baktériumtenyészetben 40 perc alatt 3 szorosára nő a baktériumok száma. Mennyi a generációs idő, vagyis hány perc alatt duplázódik meg a baktériumok száma?

Kezdetben van valamennyi baktérium.

Aztán megduplázódik…

aztán megint megduplázódik.

És így tovább.

A mi történetünkben háromszorosára nő a baktériumok száma:

Megint jön a számológép és megnyomjuk rajta azokat a gombokat, hogy log, aztán 2 aztán 3.

Vagy ha az előbb így nem tudtuk kiszámolni, akkor feltehetően most se.

Ilyenkor segít nekünk ez a trükk.

És most nézzük, hogyan tovább.

Az x=1,585 azt jelenti, hogy ennyi generációs idő telt el 40 perc alatt.

Vagyis egy generációs idő hossza…

25,24 perc.

A baktériumok száma 25,24 perc alatt duplázódik meg.

A radioaktív anyagok felezési ideje azt jelenti, hogy mennyi idő alatt csökken a radioaktív anyagban az atommagok száma a felére. A 239-plutónium felezési ideje például 24 ezer év, a 90-stronciumé viszont csak 25 év.

Ez a remek kis képlet adja meg a radioaktív bomlás során az atommagok számát az idő függvényében:

Egy 90-stronciummal szennyezett területen hány százalékkal csökken 40 év alatt a radioaktív atommagok száma? Mennyi idő alatt csökken a 12,5%-ára a 90-stroncium mennyisége? A T felezési idő 25 év, és az alábbi összefüggés áll fenn:

Lássuk, mi történik 40 év alatt:

40 év alatt tehát a 33%-ára csökken a 90-stroncium atommagok száma.

Most nézzük, mennyi idő alatt csökken a 90%-ára az atommagok száma.

Tehát úgy néz ki, hogy 3,8 év alatt csökken 90%-ára az atommagok száma.

Egy anyagban a radioaktív atommagok száma 30 év alatt 12%-kal csökken. Mekkora a felezési idő? Mennyi idő alatt csökken 50%-ról 10%-ra az anyagban található radioaktív atomok száma?

Itt jön a mi kis képletünk:

30 év alatt 12%-kal csökkent:

Na, ez így sajna nem túl jó…

Ha valami 12%-kal csökken, akkor 88% lesz.

A felezési idő tehát 162,7 év.

Most nézzük, hogy mennyi idő alatt csökken 50%-ról 10%-ra a radioaktív atomok száma:

377,8 év alatt csökken 50%-ról 10%-ra.

Hát, ennyi.

 

Szöveges feladatok exponenciális és logaritmusos egyenletekkel

02
hang
Hopsz, úgy tűnik nem vagy belépve, pedig itt olyan érdekes dolgokat találsz, mint például:

Itt röviden és szuper-érthetően elmeséljük neked, hogy mi az a logaritmus és hogyan kell megoldani logaritmusos egyenleteket. A logaritmus fogalma, Logaritmus azonosságok, Logaritmusos egyenletek, Hogyan oldjunk meg logaritmusos egyenleteket?

Itt jön egy fantasztikus
Középiskolai matek képsor.
Végül is miért ne néznél meg
még egy képsort?

Hozzászólások

Még nincs hozzászólás. Legyél Te az első!