Matematika 2 OE epizód tartalma:
MÁTRIXOK DETERMINÁNSA, SAJÁTÉRTÉKE ÉS SAJÁTVEKTORA
DEFINÍCIÓ: Ha az egy -es mátrix, akkor determinánsa
ahol p az oszlopindexek permutációi, I(p) pedig ezen permutációk inverziószáma.
Ez egy igazán remek definíció, de egy kis magyarázatot igényel.
Valójában a mátrixok determinánsa sokkal egyszerűbb fogalom.
Arról van szó, hogy a mátrix minden sorából és oszlopából kiválasztunk egy és csak egy elemet, és ezeket az elemeket összeszorozzuk. Ezt az összes lehetséges módon
megtesszük, és a szorzatokat ellátjuk egy előjellel, végül az így kapott előjeles
szorzatokat összeadjuk.
EGY 2x2-ES MÁTRIX DETERMINÁNSA
Nézzünk erre egy példát. Itt van egy mátrix:
aminek a determinánsa
A determináns tehát azt tudja, hogy minden mátrixból csinál
egyetlen számot.
Hamarosan az is kiderül, hogy mindez mire jó, de most lássuk
mi a helyzet egy 3X3-as mátrix determinánsával!
EGY 3x3-AS MÁTRIX DETERMINÁNSA
A 3X3-as mátrixok determinánsának kiszámolására van egy szabály,
ami szarrusz szabály néven ismert.
A szabály lényege, hogy fogjuk a mátrixot
és leírjuk saját maga mögé még egyszer,
majd vesszük a főátlókat és a mellékátlókat.
A főátlók elemeit összeszorozzuk és pozitív előjellel vesszük,
aztán a mellékátlók elemeit is összeszorozzuk, de azokat negatív előjellel vesszük.
Ez a mátrix determinánsa.
A módszer sajnos csak 3x3-as mátrixokra működik és nem túl kellemes.
Sokkal több értelme van megjegyezni az úgynevezett kifejtési tételt,
ami minden nxn-es mátrixra jó és most jön.
Ha az egy -es mátrix, akkor determinánsa
Itt a elemhez tartozó aldetermináns.
Semmi ok az aggodalomra, a gyakorlatban mindez sokkal egyszerűbb.
Nézzünk egy példát!
Van itt ez a 3x3-as mátrix:
Ennek a determinánsát fogjuk kiszámolni, és mondjuk az első sora
szerint fejtjük ki.
Kifejthetjük a második sor szerint is, majd megnézzük azt is,
a végeredmény ugyanaz kell, hogy legyen.
Az első sor elemeit váltakozó előjellel kell venni, ez a bizonyos
de egyszerűbb, ha az úgynevezett sakktábla-szabályt jegyezzük meg.
Az aldeterminánst majd mindjárt megnézzük!
A sakktábla-szabály miatt a második elem mínusszal van.
A harmadik megint plusszal.
Most jönnek az aldeterminánsok, amik úgy keletkeznek,
hogy az adott elem sorát és oszlopát kihúzzuk.
Végül kiszámoljuk a 2X2-es mátrixok determinánsait.
És kész is.
Nézzük meg, hogy mi történik, ha a második sor szerint fejtünk ki!
Ha a második sor szerint fejtünk ki, akkor a sakktábla-szabályban is
a második sort kell nézni.
És kifejthetjük a harmadik sor szerint is,
de ami még ennél is izgalmasabb, hogy oszlop szerint is ki lehet fejteni.
Mondjuk nézzük meg a harmadik oszlop szerint!