Analízis 3 IK epizód tartalma:
Ha egy -es mátrixnak van darab független sajátvektora, akkor létezik a mátrixnak egy úgynevezett diagonális alakja.
A diagonális alak így néz ki:
a főátlóban vannak a sajátértékek és az összes többi elem nulla.
A diagonális alakot a következő módon állítjuk elő:
itt vagyis egyszerűen úgy keletkezik, hogy a sajátvektorokat fogjuk, és leírjuk egymás mellé.
Nézzünk meg erre egy példát!
Állítsuk elő ennek a -as mátrixnak a diagonális alakját.
1. A KARAKTERISZTIKUS EGYENLET FELÍRÁSA
A főátló elemeiből kivonogatjuk a -kat, és vesszük a determinánsát:
A determinánst az első sora szerint fejtjük ki:
2. A KARAKTERISZTIKUS EGYENLET MEGOLDÁSAI A SAJÁTÉRTÉKEK
Most három sajátérték van, ; és .
Mindhárom sajátértékhez megkeressük a hozzá tartozó sajátvektort.
3. A SAJÁTÉRTÉKEKHEZ TARTOZÓ SAJÁTVEKTOROK MEGKERESÉSE
A sajátvektorokat úgy kapjuk meg, ha megoldjuk az
egyenletrendszert:
Az egyenletrendszereket bázistranszformációval oldjuk meg.
Akinek a bázistranszformációval kapcsolatos emlékei sajnálatos módon
elhalványultak, az nézze meg az erről szóló részt.
A bázistranszformáció elakadt, -et nem tudjuk lehozni, így elnevezzük –nek.
Leolvassuk a megoldást.
A sajátértékhez tartozó sajátvektor:
ahol
Most jöhet a többi sajátvektor. Megint az egyenletrendszert kell megoldanunk:
Belerakjuk a -t
Bázistranszformációval oldjuk meg:
A sajátértékhez tartozó sajátvektor:
ahol
és a -et
Bázistranszformációval oldjuk meg:
A sajátértékhez tartozó sajátvektor:
ahol
Úgy tűnik van három független sajátvektor, tehát a mátrix
diagonalizálható, a diagonalizáló mátrix pedig
A diagonális alakot az eredeti mátrixból a diagonalizáló mátrix
segítségével állítjuk elő:
A szorzásokat elvégezni azonban felesleges, mert a diagonális alak mindig úgy néz ki, hogy a főátlóban vannak a sajátértékek, az összes többi elem pedig nulla.
A sajátértékeket már régóta tudjuk
A diagonális alak tehát: