Analízis 3 epizód tartalma:
Másodrendű lineáris állandó együtthatós homogén differenciálegyenlet megoldása, A karakterisztikus egyenlet, A karakterisztikus egyenlet megoldása, Két valós megoldás esete, Egy valós megoldás esete, Két komplex megoldás esete, Másodrendű lineáris állandó együtthatós homogén differenciálegyenlet megoldóképlete, A differenciálegyenlet megoldása.
Másodrendű lineáris állandó együtthatós homogén differenciálegyenlet
Íme itt van ez az egyenlet.
Az eddigi módszereinkkel várhatóan nem fogunk jelentős sikereket elérni ennek az egyenletnek a megoldásában, ez az egyenlet ugyanis másodrendű.
Nos ez, nem egy bíztató jel a megoldás szempontjából.
Az ilyen egyenleteket általában elég nehéz megoldani.
De szerencsére ez a típus kivétel.
Lássuk mit kell tenni vele.
Ez az egyenlet általános alakja, és a dolog úgy áll, hogy az ilyen egyenleteknek a megoldása mindig valami
Helyettesítsük be ezt az egyenletbe és nézzük meg mi történik.
Ezt az egyenletet karakterisztikus egyenletnek nevezzük.
A differenciálegyenlet megoldásához ezt a másodfokú egyenletet kell megoldanunk.
A differenciálegyenlet megoldása:
Ha a karakterisztikus egyenletnek két különböző valós megoldása van és akkor
Ha a karakterisztikus egyenletnek egy valós megoldása van, akkor
Ha a karakterisztikus egyenletnek két különböző komplex megoldása van
És most lássuk a megoldást.
A karakterisztikus egyenlet:
Úgy tűnik, ezt meg is oldottuk. Nézzünk meg egy másikat is.
Itt jön a karakterisztikus egyenlet:
Hát ez se volt túl nehéz.
Végül nézzük meg a harmadik típust.
Nos itt van egy kis gond.
Negatív szám van a gyök alatt, ami azt jelenti, hogy a karakterisztikus egyenletnek nincs valós megoldása.
Komplex megoldása viszont van, amihez mindössze annyit kell tudnunk, hogy
Most pedig lássuk a megoldást.
A helyzet akkor válik izgalmasabbá, ha az egyenlet inhomogén.
Lássuk, mi történik olyankor.
A homogén egyenlet és megoldása:
Ha két valós megoldása van:
Ha egy valós megoldása van:
Ha két komplex megoldása van:
Partikuláris megoldás (próbafüggvény módszer)
Van itt ez az egyenlet, ami inhomogén.
Ilyenkor először megoldjuk a homogén egyenletet,
utána pedig próbafüggvény módszerrel megkeressük a partikuláris megoldást.
A homogén egyenlet megoldásához megoldjuk a szokásos
karakterisztikus egyenletet.
És most jöhet a partikuláris megoldás.
Ez a bizonyos partikuláris megoldás mindig a jobb oldalon lévő függvény alapján derül ki.
Ez a jobb oldali függvény most éppen egy polinom, így aztán a partikuláris megoldást is ilyen alakban keressük.
De lehetne a jobb oldali függvény exponenciális,
vagy éppen trigonometrikus.
A partikuláris megoldás
Lássuk mit kapunk, ha behelyettesítjük az eredeti egyenletbe:
És az általános megoldás:
Itt van aztán ez a másik inhomogén egyenlet.
Van azonban itt még egy kis bökkenő.
Ugyanúgy ahogyan az elsőrendű egyenleteknél, itt is lehet rezonancia.
A rezonancia akkor fordul elő, ha a homogén megoldás egyik tagja megegyezik a partikuláris megoldás egyik tagjával.
Most tehát nincs rezonancia,
de a következő képsorban lesz…
A másodrendű egyenleteknél ez a rezonancia kicsit komplikáltabb ügy, mint annak idején az elsőrendű egyenleteknél.
Van itt ez az egyenlet:
A homogén egyenlet megoldása:
És most jöhet a partikuláris megoldás.
Ezt mindig a jobb oldalon lévő függvény alapján találjuk ki.
A homogén megoldás egyik tagja most megegyezik a partikuláris megoldás egyik tagjával, így aztán sajna rezonancia van.
A konstans szorzó ilyenkor nem számít.
És a rezonancia miatt ide még bejön egy x.
Most kiszámoljuk a partikuláris megoldás első és második deriváltját.
Aztán ezeket behelyettesítjük az eredeti egyenletbe.
Amikor karakterisztikus egyenletnek csak egy valós megoldása van, olyankor kétszeres rezonancia is lehet.
Megjelent a rezonancia.
Így aztán a partikuláris megoldásban megint kelleni fog egy x-es szorzó.
Ám ekkor a második taggal lesz rezonancia…
így aztán kell még egy x-es szorzó.
Ezt hívjuk kettős rezonanciának.
A megoldás innentől a szokásos.
Szokásosan unalmas.
Ezért most ne oldjuk meg, hanem inkább nézzük meg milyen rezonancia lehet akkor, amikor a karakterisztikus egyenletnek két komplex gyöke van.
Van itt ez a két egyenlet:
A karakterisztikus egyenletek:
A komplex megoldáshoz annyit kell tudnunk, hogy
Ezekben az esetekben rezonancia olyankor fordul elő, ha
És ilyenkor a próbafüggvény: