Középiskolai matek (teljes) epizód tartalma:
Szuper-érthetően elmeséljük, mikor független és mikor kizáró két esemény. Feladatokat is nézünk független és kizáró eseményekre. Függetlenség, Független események, Kizáró események, Eseményalgebra.
Megismerkedünk a valószínűségszámítás alapjaival, hogy mik azok a valószínűségek, hogyan kell őket kiszámolni, megnézzük mi az a klasszikus valószínűség és, hogy még milyen nem klasszikus valószínűségek lehetnek. A középiskolai matek felelevenítésével kezdjük, ahol elvileg mindenki tanult valószínűségszámítást. De csak elvileg, éppen ezért teljesen az alapoktól kezdünk és nem építünk a középiskolai matematika tanulmányokra. Kezdjük tehát a középiskolai matematika tananyag összefoglalását és átismétlését. A középiskolás matek addig jut el, hogy klasszikus valószínűségszámítás a kedvező/összes módszerrel, illetve minimálisan érinti a függetlenség, kizáróság témáját. Mi a középiskolai matekot elég hamar magunk mögött hagyva egészen valószínűségszámítás feladatokkal fogunk majd foglalkozni. Kezdjük is.A meglévő eseményeinkből újabb eseményeket készíthetünk.
Lássuk mekkora ezeknek a valószínűsége.
Nos ezeket érdemes megjegyezni, most pedig folytassuk valami érdekesebbel.
Az A és B eseményt egymástól függetlennek nevezünk, ha teljesül rájuk, hogy
Az előző dobókockás példánkban az A esemény az volt, hogy párosat dobunk, a B esemény pedig az, hogy 2-nél nagyobbat. Nézzük meg, hogy ezek függetlenek-e.
Ez jónak tűnik, úgyhogy az A és B események tehát függetlenek.
Itt van aztán egy C esemény is.
Nézzük meg, hogy vajon B és C függetlenek-e.
Hát nem.
Az A és B eseményt kizárónak nevezünk, ha
Nézzük meg mi a helyzet a példánkban szereplő eseményekkel.
Nos úgy látszik ezek nem kizárók.
A és C viszont kizárók.
Egy biztosítónál az ügyfelek 70%-ának van autóbiztosítása, 60%-ának lakásbiztosítása és 90%-uknak a kettő közül legalább az egyik.
Legyen az A esemény, hogy egy ügyfélnek van autóbiztosítása a B esemény pedig, hogy van lakásbiztosítása. Független-e a két esemény?
A két esemény akkor független, ha
Nos lássuk csak mennyi lehet .
A jelek szerint tehát nem függetlenek.
És egyébként nem is kizárók, mert
Egy másik biztosítónál az ügyfelek 80%-ának van autóbiztosítása és az ügyfelek 20%-a rendelkezik lakásbiztosítással úgy, hogy autóbiztosítása nincsen.
Hány százalékuknak van lakásbiztosítása, ha az autó és lakásbiztosítás egymástól független?
Nos van egy ilyen, hogy
Tehát az ügyfelek 2/3-ának vagyis 66%-nak van lakásbiztosítása.
Ez igazán remek, most pedig folytassuk valami egészen érdekessel.
Van egy dobókockánk, amivel egyszer dobunk. Az A esemény legyen az, hogy páratlant dobunk, a B esemény pedig az, hogy 3-nál nagyobbat.
Az A esemény valószínűségét a szokásos módon kapjuk meg.
Megszámoljuk hány esetben következik be és ezt elosztjuk az összes eset számával.
Eddig ebben nincsen semmi izgalmas.
Az izgalmak most jönnek.
Középiskolai matek (teljes) epizód.