Középiskolai matek epizód tartalma:

Itt röviden és szuper-érthetően meséljük el neked, hogy, hogyan kell függvényeket ábrázolni. Függvények, koordináták, Értelmezési tartomány, Értékkészlet, Transzformációk, Külső és belső függvény transzformációk, x tengelyre tükrözés, y tengelyre tükrözés, néhány fontosabb függvény, mindez a középiskolás matek ismétlése.

A képsor tartalma

Az x2 függvény grafikonja egy parabola.

A parabola csúcsa az origóban van.

Nézzük, mi történik akkor…

ha itt a zárójelen belül levonunk 3-at.

Ennek hatására a parabola eltolódik 3-mal...

A parabola csúcsa mindig oda tolódik,

ahol ez nulla.

Ez pedig akkor nulla, ha x=3.

Ebből tehát látjuk, hogy 3-mal tolódik el…

és azt is látjuk, hogy az x tengelyen.

Olyankor, amikor a 3-at így vonjuk le…

egészen más dolog történik.

Ilyenkor az y tengelyen tolódik 3-mal lefelé.

Az izgalmak növelése érdekében most nézzük, mi van akkor, ha ezt a két dolgot egyszerre csináljuk…

Kezdjük ezzel a résszel itt…

Aztán itt van még ez is.

Ezt úgy hívjuk, hogy belső függvény-transzformáció.

És úgy működik, hogy az x tengely mentén tolja el a függvény grafikonját.

A külső függvény-transzformáció a zárójelen kívül van itt.

Ez pedig az y tengelyen tolja el a függvényt.

Hogyha itt van például ez a függvény:

A belső transzformáció miatt az x tengely mentén eltolódik…

Egészen pontosan ide.

Az y tengely mentén pedig ide.

Most nézzük, mi a helyzet ezzel:

Ez pontosan ugyanúgy néz ki, mint az x2, csak éppen a kétszeresére nyújtva.

Az is megeshet, hogy a háromszorosára nyújtjuk…

Vagy éppen a mínusz kétszeresére.

És az is előfordulhat, hogy egyetlen függvényben minden eddigi rémség egyszerre van benne.

Végül itt jön még ez is:

De szenvedéseink tovább folytatódnak…

Néhány izgalmas kísérletet fogunk elvégezni a függvény segítségével.

Ha a elé írunk egy mínusz jelet, akkor ezzel a függvény grafikonját az x tengelyre tükrözzük.

Hogyha pedig belülre rakjuk a mínuszjelet, akkor az y tengelyre tükrözzük.

És ha kedvünk van, tükrözhetjük a függvényt

mindkét tengelyre is.

Lássuk, hogyan néz ki például ez…

A gyökjel előtt nincsen mínuszjel…

Itt belül az x előtt viszont igen.

Na persze még el is van tolva…

Megnézzük, hogy ez itt belül mikor nulla…

Úgy néz ki, hogy 4-gyel tolódik el az x tengelyen.

2-vel pedig fölfelé.

És talán még egy utolsó nem árthat meg:

A parabolát is pontosan ugyanígy tudjuk tükrözni a tengelyekre.

Hogyha az x2 elé írjuk a mínusz jelet, akkor a függvény grafikonját az x tengelyre tükrözzük.

Hogyha pedig a zárójelen belülre rakjuk a mínuszjelet, akkor az y tengelyre tükrözzük.

Csak sajnos ez nem igazán látszik…

mert a parabola az y tengelyre szimmetrikus.

Ezért is végeztük az iménti kísérleteinket a függvényen.

De azért így a végén még nézzük meg ezt:

Hát így kezdetnek ennyit a függvény-transzformációkról.

 

Függvények ábrázolása, függvénytranszformációk

02
hang
Hopsz, úgy tűnik nem vagy belépve, pedig itt olyan érdekes dolgokat találsz, mint például:

Itt röviden és szuper-érthetően meséljük el neked, hogy, hogyan kell függvényeket ábrázolni. Függvények, koordináták, Értelmezési tartomány, Értékkészlet, Transzformációk, Külső és belső függvény transzformációk, x tengelyre tükrözés, y tengelyre tükrözés, néhány fontosabb függvény, mindez a középiskolás matek ismétlése. 

Végül is miért ne néznél meg
még egy epizódot?
Ugrás az
összeshez