Matek 2 SZE epizód tartalma:
Mi az a kettősintegrál, A kétváltozós függvények ábrázolása, A grafikon alatti térfogat, Normáltartomány, Integrálás normáltartományon, A határok felcserélhetősége, A kettősintegrál kiszámolása.
A kettősintegrálok segítségével különböző felületek alatti térfogatokat tudunk kiszámolni.
A legegyszerűbb eset, amikor egy téglalapon integrálunk. Ilyenkor az integrálás határai valamilyen számok.
A sorrend megcserélhető: mindegy, hogy először az x szerinti határokat adjuk meg és utána az y szerintit vagy fordítva.
A helyzet akkor válik izgalmasabbá, ha nem téglalapon integrálunk, hanem mondjuk ezen a háromszög alakú tartományon.
Ilyenkor érdemes felülnézeti rajzot készíteni, hogy jobban lássuk miről is van szó.
Az x szerinti határok rajzunkon most 0-tól 2-ig tartanak.
Az y szerinti határok viszont nem 0-tól 2-ig, mert akkor egy téglalapot kapunk…
Úgy lesz ebből háromszög, ha az y szerinti határok 0, és .
Vagyis az y szerinti határ egy függvény.
Esetünkben csak a felső határ függvény, de miért is ne lehetne az alsó határ is függvény.
Nos, legyen mondjuk
Integráljuk ezen az tartományon mondjuk azt a függvényt, hogy
Mindig a belső integrálással kezdünk.
Először tehát y szerint integrálunk.
Ilyenkor x olyan, mintha konstans lenne.
És most jöhet az x szerinti integrálás.
Csak előbb egy kicsit összevonunk.
Nem is olyan kicsit…
Hát ez nem volt túl kellemes.
Nézzünk meg egy másikat is, hátha az barátságosabb lesz.
Integráljuk a D tartományon az függvényt.
Előfordulhat, hogy a határoló függvény csak y-nal írható le.
Itt van például ez a tartomány.
Megpróbálhatnánk a határoló függvényt y-ra rendezni, de kár fáradozni vele.
Sok felesleges munkánk adódna ugyanis:
Szóval maradjunk inkább az eredeti függvénynél,
vállalva azt a kis kellemetlenséget, hogy most az y szerinti határok lesznek konkrét számok.
Nos integráljuk ezen a tartományon az függvényt.
A kettősintegrálok segítségével különböző felületek alatti térfogatokat tudunk kiszámolni.
A helyzet akkor válik izgalmassá, ha egy olyan tartományon integrálunk, amit egyváltozós függvények határolnak.
Itt van például ez. Az x szerinti határok legyenek és ,
az y szerinti határok pedig két függvény, és .
Ezek a függvények lehetnek például valamilyen parabolák…
vagy éppen olyan függvények, amik pont egy kört rajzolnak ki.
Egy 2 sugarú kört.
Lássuk csak, a kör egyenlete:
És ha , akkor
Ha szeretnénk megtudni, hogy mik lehetnek a határoló függvények, nos akkor ebből ki kell fejeznünk y-t.
Integráljuk ezen a körön az függvényt.
A helyzet nem tűnik túl bíztatónak.
Az alapvető probléma ezzel az integrálással az, hogy nehéz. Azért nehéz, mert ronda gyökös kifejezések vannak benne.
A gyökös kifejezések pedig a kör miatt vannak.
Nos, éppen ilyen körös esetekre van egy remek módszer, ami hihetetlenül megkönnyíti ezt az integrálást.
Ez egyfajta helyettesítés, ami remekül alkalmazkodik a kör tulajdonságaihoz.
A dolog lényege, hogy a körben a hagyományos x és y koordináták helyett új koordinátákat vezetünk be.
Az egyik azt mondja meg, hogy milyen távol vagyunk a kör középpontjától és ezt r-nek nevezzük.
A másik pedig egy forgásszög, és jele… nos hát a jele théta, amit így írnak:
Az új koordinátákat polárkoordinátáknak nevezzük, a módszert pedig polárkoordinátás helyettesítésnek.
A kapcsolat a régi és az új koordináták között a következő:
A kör összes pontját úgy kapjuk meg, ha befutja a teljes kört,
0-tól egészen –ig…
az r pedig befutja a 0-tól 2-ig terjedő intervallumot.
A polárkoordinátás helyettesítés elvégzése után az integrálásban drasztikus változások lesznek.
A helyettesítést ezzel a képlettel végezzük:
A polárkoordinátás helyettesítésnek köszönhetően a ronda gyökös kifejezések eltűntek, és ami maradt, az életünk legegyszerűbb integrálása
Főleg, ha tudjuk, hogy
Sőt, a polárkoordinátás helyettesítés még ennél is többet tud.
Próbáljuk meg ugyanezt a függvényt integrálni egy olyan tartományon, ami egy lukas belsejű kör, egy körgyűrű.
Ráadásul mondjuk egy fél körgyűrű.
A polárkoordinátás helyettesítés megdöbbentően leegyszerűsíti az ilyen első ránézésre igencsak komplikáltnak tűnő helyzeteket.
Mindössze annyit kell tennünk, hogy megadjuk a szöget,
és a sugarat.
És már kész is van.
A polárkoordináták lényege, hogy az x és y koordinátákat új koordinátákra cseréljük le.
Azokban az esetekben ugyanis, amikor körök, gömbök vagy hengerek bukkannak fel, nos olyankor nem bizonyul kifizetődőnek az a fajta szögletes mentalitás, hogy x koordináta és y koordináta.
Egy olyan koordinátázást érdemes bevezetni, ami jobban alkalmazkodik a kör tulajdonságaihoz.
Egy kör belsejében a legfontosabb jellemzők a középponttól való távolság és a forgásszög.
Az egyik koordináta ezért azt mondja meg, hogy milyen távol vagyunk a kör középpontjától és ezt r-nek nevezzük.
A másik pedig egy forgásszög, és jele… nos hát a jele théta, amit így írnak:
A kapcsolat a régi és az új koordináták között a következő:
Egy R sugarú kör összes pontját úgy kapjuk meg, hogy befutja a teljes kört,
0-tól egészen –ig…
az r pedig befutja a 0-tól R-ig terjedő intervallumot.
A polárkoordinátás helyettesítés egyik haszna, hogy megdöbbentően leegyszerűsíti azokat a bonyolult integrálásokat, amiket körön vagy valamilyen köralakú alakzaton végzünk.
A helyettesítést a következő képlet segítségével végezzük el:
Lássunk néhány ilyen esetet.
Integráljuk a tartományon a következő függvényt:
Lássuk csak, hogyan is néz ki ez a tartomány.
A konstansok határozott integrálása nagyon egyszerű:
Próbáljuk meg ugyanezt a függvényt integrálni ezen a félkörön.
Ilyenkor látszik igazán, milyen ügyesen a körre vannak szabva a polárkoordináták.
A szokásos x és y koordinátákkal borzalmas lenne ez az integrálás.
De így csak annyit kell tennünk, hogy a szögeket átírjuk,
és már kész is.
Itt jön aztán egy másik.
Integráljuk a D tartományon az f(x,y) függvényt: