Még egy kis elemi bázistranszformáció | mateking
 

Gazdasági matematika ÚJ epizód tartalma:

Itt egyszerű példákon keresztül elmeséljük neked, hogyan kell megoldani lineáris egyenletrendszereket elemi bázistranszformációval és Gauss eliminációval. | Lineáris egyenletrendszerek, Lineáris egyenletrendszerek megoldása, Együtthatómátrix, Kibővített együtthatómátrix, Gauss elimináció, Gauss algoritmus, Elemi bázistranszformáció, Elemi bázistranszformáció feladatok, Pivot elem, Generáló elem, Általános megoldás. |

A képsor tartalma

Itt jön egy egyenletrendszer.

Érdemes generáló elemet úgy választani, hogy a sorában és oszlopában jó sok nulla legyen.

Ennek előnyeit pillanatokon belül élvezhetjük.

Legyen mondjuk ez.

Hát ugye az nincs

az nincs és sincs

Érdemes generáló elemet úgy választani, hogy a sorában és oszlopában jó sok nulla legyen.

Ennek előnyeit pillanatokon belül élvezhetjük.

Legyen mondjuk ez.

A nulla miatt ebben az oszlopban minden elemből nullát vonunk ki,

tehát az egész oszlop marad.

Ezért érdemes úgy választani generáló elemet, hogy a sorában

és oszlopában jó sok nulla legyen.

Hát ezért éri meg így választani.

A nullák megkönnyítik az életünket.

Kiszámolni csak ezeket kell.

A nulla miatt ebben az oszlopban mindenki marad

Sőt, ebben a sorban is mindenki marad.

És ebben a sorban is.

Alig kell valamit számolni.

Ezt az egyet kell kiszámolni:

Egy lépésre vagy attól, hogy a matek melléd álljon és ne eléd.
  • Értelmes, szórakoztató, minden pénzt megér.

    Tibor, 23
  • Olyan weboldal, ami még egy vak lovat is megtanítana integrálni.

    Petra, 26
  • Felsőbb éves egyetemisták ajánlották, "kötelező" címszóval.
    Ricsi, 19
  • Jó árban van és hihetetlenül világos a magyarázat és annyiszor lehet visszatérni az egyes lépésekre, ahányszor arra csak szükség van a megértéshez.

    Lili, 22
BelépekvagyRegisztrálok Back arrow Ugrás az
összeshez