Statisztika 2 epizód tartalma:

A hipotézisvizsgálat menete, nullhipotézis, ellenhipotézis, szignifikanciaszint, elsőfajú és másodfajú hiba, próbafüggvény, próbák, kritikus tartomány, kritikus érték, paraméteres próbák, nemparaméteres próbák, Z-próba, t-próba, khí-négyzet-próba, homogenitás- vizsgálat, illeszkedésvizsgálat, függetlenségvizsgálat, F-próba, varianciaanalízis, Bartlett-próba.

A képsor tartalma

A próbák áttekintése

A statisztikai próbákat két nagy típusba sorolhatjuk. Vannak az úgynevezett paraméteres próbák, amik egy sokaság – esetleg több sokaság – valamilyen paraméterével kapcsolatos hipotézissel foglalkoznak. Ilyen paraméter tipikusan az átlag a szórás és az arány, de természetesen bármilyen más paramétert is vizsgálhatunk. A másik nagy csoport a nemparaméteres próbák, amik a sokaság eloszlására, vagy a sokaságon belüli ismérvek eloszlásának egyezőségére, esetleg azok függetlenségére irányuló hipotézisekkel kapcsolatos próbák.

A paraméteres és a nemparaméteres próbákon belül megkülönböztetünk egy mintás, két mintás és több mintás próbákat.

Minta

Paraméteres

próbák

Nemparaméteres

próbák

Átlag

Arány

Szórás

Eloszlás

NAGY MINTA, BÁRMILYEN ELOSZLÁSÚ SOKASÁGRA

Függetlenség

Egy

mintás

Aszimptotikus

Z-próba

Z-próba

Illeszkedés-

vizsgálat:

-próba

Függetlenség-

vizsgálat:

CSAK NORMÁ-LIS ELOSZLÁSÚ SOKASÁGRA

-próba

Z-próba

t-próba

-próba

NAGY MINTA, BÁRMILYEN ELOSZLÁSÚ SOKASÁGRA

Két

mintás

Aszimptotikus

Z-próba

Z-próba

Homogenitás-

vizsgálat:

-próba

Z-próba

t-próba

F-próba

CSAK NORMÁ-LIS ELOSZLÁSÚ SOKASÁGRA

Több

mintás

Variancia-

analízis

Bartlett

Sokasági átlagra vonatkozó hipotézis, Z-próba

Egy fagyiárus 150 grammos gombócokban árulja a fagyit, ami normális eloszlású, 5 gramm szórással. A vásárlók többségének fogalma sincs róla, hogy mi az a normális eloszlás, abban viszont szinte biztosak, hogy a fagyis az utóbbi időben kisebb gombócokat ad.

Ellenőrizzük a hipotézist 5%-os szignifikanciaszinten egy 60 elemű minta alapján, ahol a gombócok átlagosan 149 grammosak voltak.

A hipotézis egy sokaság paraméterére, az átlagra vonatkozik. A sokaság normális eloszlású, szórása ismert. Az ilyen esetekben Z-próbát használunk.

Z-próba: A sokaság normális eloszlású, szórása , a sokaság átlagára

vonatkozik, a minta elemszáma n.

Kritikus értékek szignifikanciaszint esetén

KÉTOLDALI KRITIKUS TARTOMÁNY

:

:

BAL OLDA LI KRITIKUS ÉRTÉK:

JOBB OLDALI KRITIKUS ÉRTÉK:

BAL OLDALI KRITIKUS TARTOMÁNY

: :

:

BAL OLDALI KRITIKUS ÉRTÉK:

JOBB OLDALI KRITIKUS TARTOMÁNY

: :

:

JOBB OLDALI KRITIKUS ÉRTÉK:

: nullhipotézis esetén két kritikus érték lesz:

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

ami az elfogadási tartományba esik.

A hipotézist alacsony szignifikanciaszinten elfogadjuk.

Ha azt a vásárlói panaszt akarjuk megfogalmazni, hogy a gombócok 150 grammnál kisebbek, akkor ezt csak az ellenhipotézisbe csomagolva tehetjük meg, mivel a hipotézisvizsgálat úgy működik, hogy a nullhipotézisnek mindenképpen tartalmaznia kell az egyenlőséget is. A nullhipotézis tehát

: és az ellenhipotézis lesz a panasznak megfelelő állítás, hogy : , a technikai nullhipotézis pedig : . Ilyenkor csak bal oldali kritikus érték lesz:

BAL OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

ami így is az elfogadási tartományba esik.

A hipotézist alacsony szignifikanciaszinten elfogadjuk. Ugyanazt a mintát azonban mindig csak egy hipotézis ellenőrzésére szabad használni. Ha nem így tennénk, könnyen előfordulhatna, hogy addig-addig változtatunk a nullhipotézisen, míg végül elfogadjuk vagy – vagy ha az áll érdekünkben, elvetjük.

Sokasági átlagra vonatkozó hipotézis, t-próba

Egy városban naponta átlag 12-en haláloznak el különböző légúti megbetegedésekben, számuk normális eloszlású. A város mellett épült szemétégető szerint ez a szám a baleset óta nem emelkedett.

Ellenőrizzük a hipotézist 5%-os szignifikanciaszinten, ha öt véletlenül választott nap légúti megbetegedésekben elhalálozottak száma 10, 13, 19, 11, 8.

A hipotézis egy sokaság paraméterére, az átlagra vonatkozik. A sokaság normális eloszlású, szórása nem ismert. Az ilyen esetekben t-próbát használunk.

t-próba: A sokaság normális eloszlású, szórása nem ismert, a sokaság

átlagára vonatkozik, a minta elemszáma n.

Kritikus értékek szignifikanciaszint esetén

KÉTOLDALI KRITIKUS TARTOMÁNY

:

:

BAL OLDA LI KRITIKUS ÉRTÉK:

JOBB OLDALI KRITIKUS ÉRTÉK:

BAL OLDALI KRITIKUS TARTOMÁNY

: :

:

BAL OLDALI KRITIKUS ÉRTÉK:

JOBB OLDALI KRITIKUS TARTOMÁNY

: :

:

JOBB OLDALI KRITIKUS ÉRTÉK:

: nullhipotézis esetén két kritikus érték lesz:

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

A szórás

ami az elfogadási tartományba esik.

A hipotézist alacsony szignifikanciaszinten elfogadjuk.

Ha az ellenhipotézisben azt az aggodalmunkat akarjuk megfogalmazni, hogy nőtt az elhalálozottak száma, akkor

: nullhipotézis esetén az ellenhipotézis : , a technikai nullhipotézis pedig : . Ilyenkor csak jobb oldali kritikus érték lesz:

JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

ami így is az elfogadási tartományba esik.

A hipotézist alacsony szignifikanciaszinten elfogadjuk.

Ugyanazt a mintát azonban mindig csak egy hipotézis ellenőrzésére szabad használni.

Sokasági átlagra vonatkozó hipotézis,

aszimptotikus Z-próba

Egy koporsókészítő arra lett figyelmes, hogy az utóbbi időben több faanyagot kell használnia koporsóihoz, kliensei túlsúlyának következtében. Mielőtt azonban emiatt árat emelne, meg akar győződni róla, hogy a korábban 75 kg-os átlag valóban megváltozott-e. Készít hát egy 100 elemből álló felmérést, aminek átlaga 76 kg, szórása pedig 12 kg.

Nullhipotézisnek azt választva, hogy az elhalálozottak 75 kilónál nem kövérebbek, mi mondható 5%-os szignifikanciaszinten?

A hipotézis egy sokaság paraméterére, az átlagra vonatkozik. A sokaság tetszőleges eloszlású, szórása nem ismert. Az ilyen esetekben Aszimptotikus Z-próbát használunk.

Aszimptotikus Z-próba: A sokaság tetszőleges eloszlású, szórása nem ismert, a sokaság átlagára vonatkozik, a minta n elemű, elemszáma nagy.

Kritikus értékek szignifikanciaszint esetén

KÉTOLDALI KRITIKUS TARTOMÁNY

:

:

BAL OLDALI KRITIKUS ÉRTÉK:

JOBB OLDALI KRITIKUS ÉRTÉK:

BAL OLDALI KRITIKUS TARTOMÁNY

: :

:

BAL OLDALI KRITIKUS ÉRTÉK:

JOBB OLDALI KRITIKUS TARTOMÁNY

: :

:

JOBB OLDALI KRITIKUS ÉRTÉK:

Ha a nullhipotézis : , akkor az ellenhipotézis : , a technikai

nullhipotézis pedig : . Ilyenkor csak jobb oldali kritikus érték lesz:

JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján és

ami az elfogadási tartományba esik.

A : nullhipotézis tehát igaznak bizonyul, a hipotézist alacsony

szignifikanciaszinten elfogadjuk, az ellenhipotézist pedig elvetjük.

Nem állítható tehát a minta alapján megalapozottan, hogy a koporsókészítő kliensei kövérebbek lennének.

Ha a nullhipotézis : , akkor két kritikus érték lesz:

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján és

ami az elfogadási tartományba esik.

A hipotézist alacsony szignifikanciaszinten elfogadjuk.

Ugyanazt a mintát azonban mindig csak egy hipotézis ellenőrzésére szabad használni.

Sokasági arányra vonatkozó hipotézis, Z-próba

Egy légitársaság a túlsúlyos utasok pótdíjfizetését tervezi bevezetni.

Más légitársaságoknál ugyanis az derült ki, hogy a légi utasok 60%-a 90kg feletti. Akkor érdemes a pótdíjfizetéssel bajlódni, ha ez az arány náluk is legalább 60%.

Vizsgáljuk meg a hipotézist 5%-os szignifikanciaszinten.

A vizsgálathoz egy véletlenszerűen választott járat 150 utasának adatai alapján végezzük, ahol ez az arány 52%.

A hipotézis egy sokaság paraméterére, egy arányra vonatkozik. A sokaság tetszőleges eloszlású. Az ilyen esetekben Z-próbát használunk.

Z-próba: A sokaság tetszőleges eloszlású, egy sokasági arányra vonatkozik, a minta n elemű, elemszáma nagy.

Kritikus értékek szignifikanciaszint es etén

KÉTOLDALI KRITIKUS TARTOMÁNY

:

:

BAL OLDALI KRITIKUS ÉRTÉK:

JOBB OLDALI KRITIKUS ÉRTÉK:

BAL OLDALI KRITIKUS TARTOMÁNY

: :

:

BAL OLDA LI KRITIKUS ÉRTÉK:

JOBB OLDALI KRITIKUS TARTOMÁNY

: :

:

JOBB OLDALI KRITIKUS ÉRTÉK:

: nullhipotézis esetén két kritikus érték lesz:

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

ami nem az elfogadási tartományba esik.

A hipotézist alacsony szignifikanciaszinten elvetjük.

Ha a nullhipotézis az, hogy a túlsúlyosok aránya 60% feletti, akkor

: az ellenhipotézis : , a technikai nullhipotézis pedig : . Ilyenkor csak bal oldali kritikus érték lesz:

BAL OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

ami így is az elfogadási tartományon kívül esik.

A hipotézist alacsony szignifikanciaszinten elvetjük.

Ugyanazt a mintát azonban mindig csak egy hipotézis ellenőrzésére szabad használni.

Sokasági varianciára vonatkozó hipotézis, -próba

Egy gyógyszergyárban rendszeresen ellenőrzik, hogy a tablettákba kerülő 500 mg hatóanyag szórása a megengedett 6 mg-tól eltér-e. A hatóanyag mennyisége normális eloszlásnak tekinthető.

Egyik nap az öt megvizsgált tabletta hatóanyagtartalma 490, 501, 507, 496, 502.

10%-os szignifikanciaszinten megegyezik-e a szórás a megengedett 6 mg-mal?

A hipotézis egy sokaság paraméterére, a szórásra vonatkozik. A sokaság normális eloszlású. Az ilyen esetekben -próbát használunk.

-próba: A sokaság normális eloszlású, a sokasági szórásra vonatkozik, a minta n elemű.

KÉTOLDALI KRITIKUS TARTOMÁNY

:

:

BAL OLDALI KRITIKUS ÉRTÉK:

JOBB OLDALI KRITIKUS ÉRTÉK:

BAL OLDALI KRITIKUS TARTOMÁNY

: :

:

BAL OLDALI KRITIKUS ÉRTÉK:

JOBB OLDALI KRITIKUS TARTOMÁNY

: :

:

JOBB OLDALI KRITIKUS ÉRTÉK:

Ha a nullhipotézis akkor : és ilyenkor kétoldali kritikus tartományunk lesz.

A minta elemszáma n=5 így a szabadságfok v=n-1=4.

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

-eloszlás

0,05

0,95

szabadság-

fok=v

4

0,71

9,49

A minta alapján

Ami az elfogadási tartományba esik, a hipotézist tehát 10%-os szignifikanciaszinten elfogadjuk.

Ha a nullhipotézis az, hogy a szórás legfeljebb 6 mg akkor a ellenhipotézis: és ilyenkor jobb oldali kritikus tartományunk lesz.

A minta elemszáma n=5 így a szabadságfok v=n-1=4.

JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

-eloszlás

0,9

szabadság-

fok=v

4

7,78

A minta alapján

ami az elfogadási tartományba esik, a hipotézist tehát elfogadjuk.

Illeszkedésvizsgálat, -próba

A statisztika vizsgán maximum 100 pont érhető el. Az egyik vizsgán 80 hallgató vett részt, eredményeik:

pontszám

0-20

12

21-40

16

41-60

25

61-80

18

81-100

9

10%-os szignifikanciaszinten tekinthető-e a vizsgázók pontszáma egyenletes eloszlásúnak? Tekinthető-e normális eloszlásúnak?

A hipotézis a sokaság eloszlására vonatkozik. Az eljárást illeszkedésvizsgálatnak nevezzük és -próbát használunk.

ILLESZKEDÉSVIZSGÁLAT, -próba: A sokaság eloszlására irányuló vizsgálat, : mindegyik osztályköz valószínűsége egy adott eloszlásnak megfelelő érték, vagyis minden i-re az i-edik osztályköz valószínűsége a érték.

Az ellenhipotézis pedig, : van olyan osztályköz, ami nem az adott eloszlásnak megfelelő érték. A próbát jobb oldali kritikus értékkel végezzük el, a nullhipotézist az ennél kisebb, az ellenhipotézist az ennél nagyobb értékek igazolják. A minta elemszáma n.

ahol a szabadságfok .

Itt az osztályközök száma és az adott eloszlás azon paramétereinek száma, amit a mintából becsléssel határozunk meg

Ha a nullhipotézis az, hogy az elért pontszám egyenletes eloszlású, akkor minden osztályközben ugyanakkora a valószínűség. Mivel pedig öt osztályköz van, .

pontszám

Egyenletes eloszlást

feltételezve

0-20

12

0,2

21-40

16

0,2

41-60

25

0,2

61-80

18

0,2

81-100

9

0,2

A szabadságfok .

Itt az osztályközök száma, ami most öt és az adott eloszlás azon paramétereinek száma, amit a mintából becsléssel határozunk meg. Most nem határoztunk meg a mintából semmilyen paramétert, így . Ekkor

A próba elvégzésekor csak jobb oldali kritikus érték van, ha a mintából kapott érték ennél nagyobb, akkor a nullhipotézist elvetjük.

A jobb oldali kritikus érték

A minta alapján

Ez nagyobb, mint a jobb oldali kritikus érték, tehát a nullhipotézist elvetjük. 10%-os szignifikanciaszinten nem állíthatjuk, hogy a pontszámok eloszlása egyenletes.

Lássuk, lehet-e normális eloszlású!

Ha normális eloszlást tételezünk föl, akkor meg kell adnunk annak két paraméterét, a várható értéket és a szórást. Ezeket a mintából becsléssel állapítjuk meg.

A várható érték a minta átlaga alapján:

A szórás pedig a minta szórása alapján:

Most elkészítjük a normális eloszlásnak megfelelő valószínűségeket.

Ezt úgy kell elképzelnünk, hogy a normális eloszlás harang alakú görbéjét felszeleteljük az osztályközöknek megfelelően öt részre.

Ezeknek a részeknek a területei lesznek a megfelelő valószínűségek.

Kiszámolni úgy tudjuk őket, hogy standardizáljuk az osztályközök határait.

Elegendő csak az alsó vagy csak a felső határokat standardizálni, hiszen ami az egyik szelet felső határa, az a következő szelet alsó határa.

Most válasszuk a felső határokat.

Pontszám

0-20

12

-1,19

0,1151

21-40

16

-0,37

0,3632

41-60

25

0,453

0,6736

61-80

18

1,27

0,8944

81-100

9

A valószínűségeket a standard-normális eloszlás táblázatból kapjuk.

Ha Z negatív, akkor a hozzá tartozó valószínűség 1 – (ami a táblázatban van)

Aki nem hiszi, olvassa el a mesét a normális eloszlásról.

Ezek a valószínűségek azonban kumuláltak, vagyis nem az adott osztályközhöz, hanem az adott osztályközig az összeshez tartoznak. Úgy lesz belőle , ha mindegyikből kivonjuk az előzőt.

A 21-40 osztályköznél tehát

A 41-60 osztályköznél tehát

pontszám

Normális eloszlást

feltételezve

0-20

12

-1,19

0,1151

0,1151

21-40

16

-0,37

0,3632

0,2481

41-60

25

0,453

0,6736

0,3104

61-80

18

1,27

0,8944

0,2208

81-100

9

0,1056

Az utolsó osztályközbe a maradék valószínűség kerül, vagyis

1 – (az eddigiek összege)

A próba elvégzésekor csak jobb oldali kritikus érték van, ha a mintából kapott érték ennél nagyobb, akkor a nullhipotézist elvetjük.

A szabadságfok .

Itt az osztályközök száma, ami most öt és az adott eloszlás azon paramétereinek száma, amit a mintából becsléssel határozunk meg. Most két paramétert határoztunk meg a mintából, mégpedig -t és -t, így . Ekkor

A jobb oldali kritikus érték

A minta alapján

Ez kisebb, mint a kritikus érték, a hipotézist tehát 10%-os szignifikanciaszinten elfogadjuk.

Függetlenségvizsgálat, -próba

Vizsgáljuk meg, hogy van-e szignifikáns kapcsolat egy ország lakosainak jövedelmi viszonyai és bevándorló-ellenessége között az alábbi felmérés alapján:

Jövedelem

A bevándorlók

össz

Nem zavarják

közömbös

zavarják

alacsony

18

35

37

90

közepes

32

48

30

110

magas

18

20

12

50

összesen

68

103

79

250

Szignifikanciaszint legyen 10%-os.

A hipotézis a sokaságon belül két ismérv függetlenségének vizsgálatára irányuló vizsgálat. Az eljárást függetlenségvizsgálatnak nevezzük és -próbát használunk.

FÜGGETLENSÉGVIZSGÁLAT, -próba: A sokaságon belül két ismérv függetlenségére irányuló vizsgálat. : a két ismérv független, az ellenhipotézis pedig, : a két ismérv közti kapcsolat sztochasztikus vagy függvényszerű.

A próbát jobb oldali kritikus értékkel végezzük el, a nullhipotézist az ennél kisebb, az ellenhipotézist az ennél nagyobb értékek igazolják. A minta elemszáma n, a minta alapján készített kontingencia tábla sorainak száma r, oszlopainak száma c.

Ahol a szabadságfok .

A kontingencia tábla sorainak száma r=3 ( az összesen sor nyilvánvalóan nem számít ) oszlopainak száma pedig c=3, így a szabadságfok

A jobb oldali kritikus érték

Az ügymenet megkönnyítése érdekében készítünk egy -os táblázatot.

Ez pontosan úgy készül, mint ahogyan az asszociációs kapcsolat vizsgálatakor, vagyis

Jövedelem

A bevándorlók

össz

Nem zavarják

közömbös

zavarják

alacsony

24,48

36,72

28,44

90

közepes

29,92

45,32

34,76

110

magas

13,6

20,6

15,8

50

összesen

68

103

79

250

A kapott érték nagyobb a kritikus értéknél, így a nullhipotézist elvetjük.

10%-os szignifikanciaszinten tehát nem független a jövedelem és a bevándorlókról való vélekedés.

Nézzük meg, hogy ekkor vajon szignifikánsan eltér-e a bevándorlókról való vélekedés az alacsony és a magas jövedelműek körében. Ehhez két sokaságban valamely változó eloszlásának egyezőségét kell megvizsgálnunk, amit homogenitásvizsgálatnak nevezünk.

Ez jön most.

Homogenitásvizsgálat, -próba

Vizsgáljuk meg, hogy szignifikánsan eltér-e a bevándorlókról való vélekedés az alacsony és a magas jövedelműek körében. Ehhez két sokaságban valamely változó eloszlásának egyezőségét kell megvizsgálnunk, amit homogenitásvizsgálatnak nevezünk.

Jövedelem

A bevándorlók

össz

Nem zavarják

közömbös

zavarják

alacsony

17

35

38

90

közepes

33

48

29

110

magas

18

20

12

50

összesen

68

103

79

250

Ebben az esetben két eloszlás egyezőségét kell vizsgálnunk. Maguknak az eloszlásoknak a típusáról itt tehát nem állítunk semmit, kizárólag azt vizsgáljuk, hogy egyezőek-e vagy sem. A nullhipotézis mindig az lesz, hogy a két eloszlás azonos, míg a ellenhipotézis az, hogy a két eloszlás nem azonos.

HOMOGENITÁSVIZSGÁLAT, -próba: Két sokaságban valamely változó eloszlásának egyezőségére irányuló vizsgálat. : a két sokaságban az eloszlás egyező, az ellenhipotézis pedig, : a két eloszlás nem egyező.

A próbát jobb oldali kritikus értékkel végezzük el, a nullhipotézist az ennél kisebb, az ellenhipotézist az ennél nagyobb értékek igazolják. Mintát ezúttal mindkét sokaságból veszünk, az X sokaságból vett minta elemszáma az Y sokaságból vett mintáé mindkét mintában az osztályközök száma k.

Ahol a szabadságfok .

Az alacsony és a magas jövedelműeknél is három osztályközünk van, így k=3 a szabadságfok pedig v=k-1=2.

A jobb oldali kritikus érték

Jövedelem

A bevándorlók

össz

Nem zavarják

közömbös

zavarják

alacsony

17

35

38

90

közepes

33

48

29

110

magas

18

20

12

50

összesen

68

103

79

250

A próbafüggvény

6,76

A kapott érték a kritikus értéknél nagyobb, a két eloszlás, és így a két jövedelmi osztály bevándorlókról való vélekedés a minta alapján szignifikánsan különböző.

Két sokaság átlagának eltérésére vonatkozó hipotézis, Z-próba

Ásványvizeket előállító cég a már meglévő mellett új kutat tervez megnyitni. Ismert, hogy a víz ásványianyag-tartalma normális eloszlású, a régi kút esetében 12 mg, míg az új, valamivel mélyebb kút esetében 7 mg szórással.

A régi kútból származó 10 elemű független egy literes minta átlagosan 678 mg ásványianyagot tartalmaz, az új kútból vett 10 elemű független minta pedig átlagosan 689 mg-ot. Vizsgáljuk meg, hogy szignifikánsan megegyezik-e a két kútból származó víz átlagos ásványianyag-tartalma. A szignifikanciaszint legyen 5%.

A két sokaságból egymástól függetlenül vett két minta alapján szeretnénk ellenőrizni a : hipotézist, ahol tetszőleges, de előre megadott érték. Ha a nullhipotézis az, hogy a két átlag megegyezik, akkor ez a érték nulla.

A nullhipotézis helyességét ezúttal is más-más próbafüggvénnyel vizsgáljuk attól függően, hogy mit tudunk a két sokaságról.

Ha mindkét sokaság normális eloszlású, és mindkét sokaság szórása ismert, akkor kétmintás Z-próbát használunk.

Ha mindkét sokaság normális eloszlású, szórásaik nem ismertek, de annyit tudunk róluk, hogy megegyeznek, akkor kétmintás t-próbát használunk.

itt s=a két sokaság becsült szórása, amit egyformának tekintünk,

Ha a két sokaságról csak annyit tudunk, hogy mindkettő szórása véges, és mindkét minta elemszáma elég nagy, akkor kétmintás aszimptotikus Z-próbát használunk.

Most mindkét sokaság normális eloszlású és ismerjük mindkét sokaság szórását, ezért kétmintás Z-próbát használunk.

Kétmintás Z-próba: Mindkét sokaság normális eloszlású, szórásaik ismertek, és .

A nullhipotézis : , ahol tetszőleges, de előre megadott érték.

A minták elemszáma és .

A nullhipotézis az, hogy a két kútból származó víz átlagos ásványianyag-tartalma megegyezik. : ekkor az ellenhipotézis :

Kétoldali kritikus tartomány és két kritikus érték lesz:

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A próbafüggvény értéke:

Ez az elfogadási tartományon kívül esik, a két forrásból származó víz ásványianyag-tartalma tehát szignifikánsan eltér.

Két sokaság átlagának eltérésére vonatkozó hipotézis, t-próba

Egy üzemben több gépen töltenek 75 ml-es tubusokba fogkrémet, a tubusokba töltött fogkrém mennyisége normális eloszlású, a gépek szórása feltehetően egyforma.

Ellenőrizzük 10%-os szignifikanciaszinten, hogy az átlagosan a tubusokba töltött fogkrém mennyisége is egyforma, ha a két gépről az alábbi 12 elemű minták állnak rendelkezésre:

Egyik gép

76

71

75

74

76

76

74

75

77

75

75

75

Másik gép

75

75

74

77

73

73

76

77

76

73

75

74

A két sokaságból egymástól függetlenül vett két minta alapján szeretnénk ellenőrizni a : hipotézist, ahol tetszőleges, de előre megadott érték. Ha a nullhipotézis az, hogy a két átlag megegyezik, akkor ez a érték nulla.

A nullhipotézis helyességét ezúttal is más-más próbafüggvénnyel vizsgáljuk attól függően, hogy mit tudunk a két sokaságról.

Ha mindkét sokaság normális eloszlású, és mindkét sokaság szórása ismert, akkor kétmintás Z-próbát használunk.

Ha mindkét sokaság normális eloszlású, szórásaik nem ismertek, de annyit tudunk róluk, hogy megegyeznek, akkor kétmintás t-próbát használunk.

itt s=a két sokaság becsült szórása, amit egyformának tekintünk,

Ha a két sokaságról csak annyit tudunk, hogy mindkettő szórása véges, és mindkét minta elemszáma elég nagy, akkor kétmintás aszimptotikus Z-próbát használunk.

Kétmintás t-próba: A két sokaság normális eloszlású és szórásaik egyformák.

itt

A nullhipotézis : , ahol tetszőleges, de előre megadott érték.

A minták elemszáma és , szórása és , a szabadságfok

most

A nullhipotézis az, hogy a két gépen a tubusokba töltött fogkrém átlaga megegyezik

: és : . Ekkor két kritikus érték lesz:

A szabadságfok =12+12-2=22

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A próbafüggvény értéke:

Ez az elfogadási tartományba esik, az átlagok egyezését 10%-os szignifikanciaszinten elfogadjuk.

Két sokaság átlagának eltérésére vonatkozó hipotézis, aszimptotikus Z-próba

Az ÖBB vasúttársaság vonalain közlekedő nappali és Euronight vonatok közlekedésének paramétereit hasonlították össze. Állapítsuk meg a megvizsgált 400 járat alapján, van-e szignifikáns eltérés a kétféle vonattípus 500 kilométerre eső átlagos késése között. Megalapozott-e az az állítás 5%-os szignifikanciaszinten, hogy az Euronight vonatok 500 kilométeren átlagosan 15 perccel többet késnek?

Késés, perc

(500 km távolságon)

Nappali

Euronight

0-15

220

50

16-30

25

64

31-45

4

24

46-60

1

12

össz

250

150

A két sokaságból egymástól függetlenül vett két minta alapján szeretnénk ellenőrizni a : hipotézist, ahol tetszőleges, de előre megadott érték. Ha a nullhipotézis az, hogy a két átlag megegyezik, akkor ez a érték nulla.

A nullhipotézis helyességét ezúttal is más-más próbafüggvénnyel vizsgáljuk attól függően, hogy mit tudunk a két sokaságról.

Ha mindkét sokaság normális eloszlású, és mindkét sokaság szórása ismert, akkor kétmintás Z-próbát használunk.

Ha mindkét sokaság normális eloszlású, szórásaik nem ismertek, de annyit tudunk róluk, hogy megegyeznek, akkor kétmintás t-próbát használunk.

itt s=a két sokaság becsült szórása, amit egyformának tekintünk,

Ha a két sokaságról csak annyit tudunk, hogy mindkettő szórása véges, és mindkét minta elemszáma elég nagy, akkor kétmintás aszimptotikus Z-próbát használunk.

Az két sokaság eloszlásáról és azok szórásairól nem tudunk semmit, ezért kétmintás aszimptotikus Z-próbát használunk.

Kétmintás aszimptotikus Z-próba: A két sokaság eloszlása és szórása nem ismert, mindkettő szórása véges, és mindkét minta elemszáma elég nagy.

A nullhipotézis : , ahol tetszőleges, de előre megadott érték.

A minták elemszáma és , szórása és .

Ha a nullhipotézis az, hogy az Euronight vonatok 15 perccel többet késnek, : akkor két kritikus érték lesz:

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A próbafüggvény értéke:

Ez az elfogadási tartományon kívül esik, a hipotézist tehát 5%-os szignifikanciaszinten elvetjük.

Ha a nullhipotézisben azt fogalmazzuk meg, hogy az Euronight vonatok legalább 10 perccel többet késnek, : akkor egyoldali kritikus tartományunk lesz.

A technikai nullhipotézis: :

BAL OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

Ez igencsak a kritikus tartományba esik, így a hipotézist elfogadjuk.

Két sokaság arányának eltérésére vonatkozó hipotézis, Z-próba

Egy párt népszerűségét két közvéleménykutató is felmérte. Az egyik 32%-os, a másik 36%-os támogatottságot mért, mindkettő 500 fős felmérés alapján.

Szignifikánsan eltérnek-e az eredmények? A szignifikanciaszint legyen 5%.

Kétmintás Z-próba: Két sokaság sokasági arányának összehasonlítására irányuló próba.

speciális esetben

ahol és a minták elemszáma.

A nullhipotézis : , ahol tetszőleges, de előre megadott érték.

Abban az esetben, ha a próbafüggvényt célszerű alkalmazni, itt

és

A nullhipotézis legyen az, hogy a két felmérés eredménye megegyezik.

: ekkor az ellenhipotézis :

Kétoldali kritikus tartomány és két kritikus érték lesz:

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A próbafüggvény értékét a szemléltetés kedvéért mindkét módon kiszámoljuk.

A kimondottan erre az esetre használatos próbafüggvényt nézzük meg először.

ekkor

Ez az elfogadási tartományba esik, a két közvéleménykutató eredménye tehát nem tér el szignifikánsan egymástól.

Ha a másik próbafüggvényt használjuk,

Ami látszik, hogy picit nagyobb értéket ad, de most még ez is bőven az elfogadási tartományba esik.

Két sokaság szórásának eltérésére vonatkozó hipotézis, F-próba

Egy gazdaságban kétféle paradicsomot termesztenek, mindkettő átmérője lényegében normális eloszlású. A génmódosított paradicsom átmérőjének szórása egy 10 elemű minta alapján 5 milliméter, míg a hagyományos paradicsom esetében egy 8 elemű minta alapján ez 12 milliméter.

Szignifikánsan eltérnek-e a szórások, ha a szignifikanciaszint 10%?

F-próba: Két sokaság szórásának összehasonlítására irányuló próba, ha mindkét sokaság normális eloszlású. A nullhipotézis :

az F-eloszlás két szabadságfoka és , ahol és a két minta elemszáma. Célszerű 1-es sokaságnak mindig a nagyobb szórással rendelkezőt nevezni.

A kritikus értékek az összefüggés alapján:

BAL OLDALI KRITIKUS TARTOMÁNY ESETÉN:

KÉTOLDALI KRITIKUS TARTOMÁNY ESETÉN: ÉS

JOBB OLDALI KRITIKUS TARTOMÁNY ESETÉN:

Az 1-es sokaság legyen a nagyobb szórással rendelkező hagyományos paradicsom. Ekkor

így

így

A nullhipotézis : vagyis kétoldali kritikus tartományunk és így két kritikus értékünk lesz, amiket az F-eloszlás táblázatából keresünk ki.

A szignifikanciaszint , ekkor a k

és

A minta alapján

Ez az elfogadási tartományon kívül esik, a génmódosított paradicsom szórása így szignifikánsan eltér a hagyományos paradicsom szórásától.

Varianciaanalízis

Nevével ellentétben ez a próba több sokaság várható értékének összehasonlítására vonatkozó próba. A nullhipotézis: , míg az ellenhipotézis az, hogy van olyan amire .

Például a naponta átlagosan TV-nézéssel töltött időt szeretnénk összehasonlítani a különböző iskolai végzettségűek körében, vagyis arra vagyunk kíváncsiak, hogy az iskolai végzettség hatással van-e a TV előtt töltött időre. A vizsgált részsokaságok a 8 általánost végzettek, a középfokú végzettségűek, és az egyetemi végzettségűek. A minta a következő:

Iskolai

végzettség

TV-nézéssel töltött

idő naponta (perc)

elemszám

8 általános

65; 43; 87; 105; 109; 56;

130; 88; 68; 70; 95

11

középfokú

48; 68; 72; 55; 43; 92;

87; 93; 65

9

egyetemi

35; 65; 42; 54; 28; 73; 54

7

összesen

27

5%-os szignifikanciaszinten egyformának tekinthető-e az átlagosan TV-nézéssel töltött idő?

VARIANCIAANALÍZIS: Több sokaság várható értékének összehasonlítására vonatkozó próba, ha mindegyik sokaság normális eloszlású és azonos szórású.

A nullhipotézis: , vagyis az, hogy a várható értékek az összes sokaságra (M db) megegyeznek, míg az ellenhipotézis az, hogy van olyan amire .

A részsokaságokból vett minták, a részsokaságok száma M.

minta

elemszám

átlag

szórás

1-es részsokaság

2-es részsokaság

j-edik részsokaság

összesen

A próbafüggvény

A két szabadságfok és , a próba jobb oldali kritikus értékkel hajtandó végre:

JOBB OLDALI KRITIKUS ÉRTÉK:

VARIANCIAANALÍZIS-TÁBLÁZAT

SZÓRÓDÁS

OKA

ELTÉRÉS-

NÉGYZETÖSSZEG

SZABADSÁG-

FOK

ÁTLAGOS

NÉGYZETÖSSZEG

F

p-ÉRTÉK

Részsokaságra

bontás miatt

Részsokaságon

belüli hiba

össz.

A próba elvégzésének feltétele, hogy minden sokaság normális eloszlású és azonos szórású legyen. Most tételezzük föl, hogy ezek a feltételek teljesülnek. Kiszámoljuk a minta részátlagait és rész-szórásait, majd az SSK és SSB eltérés-négyzetösszegeket.

minta

elemszám

átlag

szórás

8 általános

11

középfokú

9

egyetemi

7

összesen

27

A szabadságfok és a próbafüggvény

A 5%-os szignifikanciaszinthez tartozó jobb oldali kritikus érték:

A próbafüggvény érték a kritikus tartományba esik, így a hipotézist 5%-os szignifikanciaszinten elvetjük, a különböző iskolai végzettségűek naponta átlagosan TV-nézéssel töltött ideje szignifikánsan nem egyezik meg.

VARIANCIAANALÍZIS-TÁBLÁZAT

SZÓRÓDÁS

OKA

ELTÉRÉS-

NÉGYZETÖSSZEG

SZABADSÁG-

FOK

ÁTLAGOS

NÉGYZETÖSSZEG

F

Részsokaságra

bontás miatt

Részsokaságon

belüli hiba

össz.

Bartlett-próba

Az előző példánknál maradva a naponta átlagosan TV-nézéssel töltött időt szeretnénk összehasonlítani a különböző iskolai végzettségűek körében, de most arra vagyunk kíváncsiak, hogy vajon ugyanakkora-e a szórás az egyes részsokaságokban.

A minta ugyanaz, mint az előbb:

Iskolai

végzettség

TV-nézéssel töltött

idő naponta (perc)

elemszám

8 általános

65; 43; 87; 105; 109; 56;

130; 88; 68; 70; 95

11

középfokú

48; 68; 72; 55; 43; 92;

87; 93; 65

9

egyetemi

35; 65; 42; 54; 28; 73; 54

7

összesen

27

5%-os szignifikanciaszinten egyformának tekinthető-e a TV-nézéssel töltött idő szórása?

Bartlett-próba: Több sokaság szórásának összehasonlítására vonatkozó próba, ha mindegyik sokaság normális eloszlású.

A nullhipotézis: , vagyis az, hogy az összes sokaság (M db) szórása megegyezik, míg az ellenhipotézis az, hogy van olyan amire .

A részsokaságokból vett minták, a részsokaságok száma M.

minta

elemszám

átlag

szórás

1-es részsokaság

2-es részsokaság

j-edik részsokaság

összesen

A próbafüggvény

A próbafüggvény M-1 szabadságfokú eloszlást követ.

a j-edik részsokaság szabadságfoka, tehát és

és pedig a részsokaságok szórásai.

A próba jobb oldali kritikus értékkel hajtandó végre:

Kiszámoljuk a minta részátlagait és részszórásait, majd az SSB

eltérés-négyzetösszeget.

minta

elemszám

átlag

szórás

8 általános

11

középfokú

9

egyetemi

7

összesen

27

A próbafüggvény tehát:

A kritikus értéket az M-1 szabadságfokú szabadságfok eloszlásból keressük ki, a szignifikanciaszint 5%, tehát

A jobb oldali kritikus érték ekkor 5,99

A próbafüggvény érték ennél kisebb, vagyis a szórások egyezéséről szóló hipotézist 5%-os szignifikanciaszinten elfogadjuk.

8.1. Egy üzemben 5kg-os mosóporokat töltenek 21 gramm szórással és lényegében normális eloszlással. Az egyik gép által csomagolt mosóporok közül egy 41 elemű minta átlaga 4980 gramm, szórása 25 gramm.

5%-os szignifikanciaszinten megfelel-e a gép beállítása a szabványnak?

Először a szórásra vonatkozó hipotézist ellenőrizzük. Ha ugyanis az helyesnek bizonyul, és megfelel a szabvány 21 grammnak, akkor ezt felhasználhatjuk az átlagra vonatkozó hipotézisünkhöz, és alkalmazhatjuk a Z-próbát, amihez szükséges a sokaság szórásának ismerete. Ha viszont a szórásra vonatkozó hipotézisünk megbukik, akkor az átlag esetében azt nem vesszük figyelembe, és t-próbát használunk.

A szórás vizsgálatánál -próbát használunk.

-próba: A sokaság normális eloszlású, a sokasági szórásra vonatkozik, a minta n elemű.

A nullhipotézis az ellenhipotézis pedig : és ilyenkor kétoldali kritikus tartományunk lesz.

A minta elemszáma n=41 így a szabadságfok v=41-1=40.

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

Ami az elfogadási tartományba esik, a szórás tehát megfelel az előírtaknak.

Z-próba: A sokaság normális eloszlású, szórása , a sokaság átlagára

vonatkozik, a minta elemszáma n.

Az átlagra vonatkozó hipotézis az, hogy a mosópor mennyisége 5 kg, ami alighanem 5000 gramm: : , az ellenhipotézis pedig : .

Ilyenkor két kritikus érték lesz:

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

ez az érték jócskán a kritikus tartományba esik, a gép beállítása semmilyen szignifikanciaszinten nem felel meg a szabványnak.

8.2. Egy üzemben literenként 300 mg C-vitamint adagolnak a dobozos narancslevekhez, közelítőleg normális eloszlással, 20 mg szórással. Egy szállítmányból vett 50 elemű minta átlagosan 310 mg C-vitamint tartalmazott, 22 mg szórással.

10%-os szignifikanciaszinten a szállítmány megfelelt-e a szabványnak?

Először a szórásra vonatkozó hipotézist ellenőrizzük. Ha ugyanis az helyesnek bizonyul, és megfelel a szabvány 20 mg-nak akkor ezt felhasználhatjuk az átlagra vonatkozó hipotézisünkhöz, és alkalmazhatjuk a Z-próbát, amihez szükséges a sokaság szórásának ismerete. Ha viszont a szórásra vonatkozó hipotézisünk megbukik, akkor az átlag esetében azt nem vesszük figyelembe, és t-próbát használunk.

-próba: A sokaság normális eloszlású, a sokasági szórásra vonatkozik, a minta n elemű.

A nullhipotézis az ellenhipotézis pedig : és ilyenkor kétoldali kritikus tartományunk lesz.

A minta elemszáma n=50 így a szabadságfok v=50-1=49.

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

Ami az elfogadási tartományba esik, vagyis a szórás megfelel az előírtaknak. Elfogadjuk tehát, hogy a szórás 20mg, vagyis használhatjuk az átlag teszteléséhez a Z-próbát.

Z-próba: A sokaság normális eloszlású, szórása , a sokaság átlagára

vonatkozik, a minta elemszáma n.

Az átlagra vonatkozó hipotézis az, hogy a C-vitamin literenkénti mennyisége 300 mg, vagyis : , az ellenhipotézis pedig : .

Ilyenkor két kritikus érték lesz:

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

ez az érték jócskán a kritikus tartományba esik, a szállítmány nem felel meg a szabványnak.

8.3. Egy ásványvíz literenként 650 mg oldott ásványianyagot tartalmaz, 5 mg szórással. Az ásványianyag-tartalom eloszlása normálisnak tekinthető.

Ellenőrizzük a megadott paraméterek helyességét 10%-os szignifikanciaszinten az alábbi 6 elemű, egyenként egy literes minta alapján: 648 mg, 658 mg, 642 mg, 643 mg, 654 mg, 661 mg.

Először a szórásra vonatkozó hipotézist ellenőrizzük. Ha ugyanis az helyesnek bizonyul, és valóban 5 mg, akkor ezt felhasználhatjuk az átlagra vonatkozó hipotézisünkhöz, és alkalmazhatjuk a Z-próbát, amihez szükséges a sokaság szórásának ismerete. Ha viszont a szórásra vonatkozó hipotézisünk megbukik, akkor az átlag esetében azt nem vesszük figyelembe, és t-próbát használunk.

-próba: A sokaság normális eloszlású, a sokasági szórásra vonatkozik, a minta n elemű.

A nullhipotézis az ellenhipotézis pedig : és ilyenkor kétoldali kritikus tartományunk lesz.

A minta elemszáma n=6 így a szabadságfok v=6-1=5.

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

és

A kapott érték az elfogadási tartományon kívül esik, tehát a minta alapján a szórásra vonatkozó 5 mg-os értéket nem tekintjük helyesnek.

Az átlagra vonatkozó hipotézisünk vizsgálatánál így nem használjuk föl a szórásra vonatkozó 5 mg-os adatot, helyette a szórást ismeretlennek tekintve t-próbát használunk.

t-próba: A sokaság normális eloszlású, szórása nem ismert, a sokaság

átlagára vonatkozik, a minta elemszáma n.

: nullhipotézis esetén az ellenhipotézis : ,

ilyenkor két kritikus érték lesz:

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

a szórás pedig

ami az elfogadási tartományba esik.

Ha az ellenhipotézisben azt az aggodalmunkat akarjuk megfogalmazni, hogy nőtt az elhalálozottak száma, akkor

: nullhipotézis esetén az ellenhipotézis : , a technikai nullhipotézis pedig : . Ilyenkor csak jobb oldali kritikus érték lesz:

JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

ami így is az elfogadási tartományba esik.

A hipotézist alacsony szignifikanciaszinten elfogadjuk.

Ugyanazt a mintát azonban mindig csak egy hipotézis ellenőrzésére szabad használni.

8.4. Korábbi felmérések szerint, egy múzeum látogatóinak 65%-a nő.

Egy véletlenszerűen választott nap 300 látogatója közül 207 nő volt.

Ellenőrizzük a nők arányára vonatkozó állítást 10%-os szignifikanciaszinten. Mekkora az a legkisebb szignifikanciaszint, amelyen a nullhipotézis, vagyis az, hogy a látogatók 68%-a nő, még éppen elvethető?

Z-próba: A sokaság tetszőleges eloszlású, egy sokasági arányra vonatkozik, a minta n elemű, elemszáma nagy.

: nullhipotézis esetén két kritikus érték lesz:

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

ami az elfogadási tartományba esik.

A hipotézist 10%-os szignifikanciaszinten elfogadjuk.

Ahhoz, hogy a nullhipotézist elvessük, az 1,45 próbafüggvény-értéknek az elfogadási tartományon kívül kell esnie, ami szélső helyzetben éppen

jobb oldali kritikus értéket jelenti, ami a standard-normális eloszlás táblázata alapján

és ekkor

Kétoldali kritikus tartomány esetén nagyon magas, 14,7%-os a legkisebb olyan szignifikanciaszint, amin a hipotézist elvethetjük.

8.5. Egy vizsgán maximum 100 pont érhető el. Az egyik vizsgán 80 hallgató vett részt, eredményeik:

pontszám

0-20

12

21-40

16

41-60

25

61-80

18

81-100

9

10%-os szignifikanciaszinten tekinthető-e a vizsgázók pontszáma egyenletes eloszlásúnak? Tekinthető-e normális eloszlásúnak?

A hipotézis a sokaság eloszlására vonatkozik. Az eljárást illeszkedésvizsgálatnak nevezzük és -próbát használunk.

ILLESZKEDÉSVIZSGÁLAT, -próba: A sokaság eloszlására irányuló vizsgálat, : mindegyik osztályköz valószínűsége egy adott eloszlásnak megfelelő érték, vagyis minden i-re az i-edik osztályköz valószínűsége a érték.

Az ellenhipotézis pedig, : van olyan osztályköz, ami nem az adott eloszlásnak megfelelő érték. A próbát jobb oldali kritikus értékkel végezzük el, a nullhipotézist az ennél kisebb, az ellenhipotézist az ennél nagyobb értékek igazolják. A minta elemszáma n.

ahol a szabadságfok .

Itt az osztályközök száma és az adott eloszlás azon paramétereinek száma, amit a mintából becsléssel határozunk meg

Ha a nullhipotézis az, hogy az elért pontszám egyenletes eloszlású, akkor minden osztályközben ugyanakkora a valószínűség. Mivel pedig öt osztályköz van, .

pontszám

Egyenletes eloszlást

feltételezve

0-20

12

0,2

21-40

16

0,2

41-60

25

0,2

61-80

18

0,2

81-100

9

0,2

A szabadságfok .

Itt az osztályközök száma, ami most öt és az adott eloszlás azon paramétereinek száma, amit a mintából becsléssel határozunk meg. Most nem határoztunk meg a mintából semmilyen paramétert, így . Ekkor

A próba elvégzésekor csak jobb oldali kritikus érték van, ha a mintából kapott érték ennél nagyobb, akkor a nullhipotézist elvetjük.

A jobb oldali kritikus érték

A minta alapján

Ez nagyobb, mint a jobb oldali kritikus érték, tehát a nullhipotézist elvetjük. 10%-os szignifikanciaszinten nem állíthatjuk, hogy a pontszámok eloszlása egyenletes.

Lássuk, lehet-e normális eloszlású!

Ha normális eloszlást tételezünk föl, akkor meg kell adnunk annak két paraméterét, a várható értéket és a szórást. Ezeket a mintából becsléssel állapítjuk meg.

A várható érték a minta átlaga alapján:

A szórás pedig a minta szórása alapján:

Most elkészítjük a normális eloszlásnak megfelelő valószínűségeket.

Ezt úgy kell elképzelnünk, hogy a normális eloszlás harang alakú görbéjét felszeleteljük az osztályközöknek megfelelően öt részre.

Ezeknek a részeknek a területei lesznek a megfelelő valószínűségek.

Kiszámolni úgy tudjuk őket, hogy standardizáljuk az osztályközök határait.

Elegendő csak az alsó vagy csak a felső határokat standardizálni, hiszen ami az egyik szelet felső határa, az a következő szelet alsó határa.

Most válasszuk a felső határokat.

Pontszám

0-20

12

-1,19

0,1151

21-40

16

-0,37

0,3632

41-60

25

0,453

0,6736

61-80

18

1,27

0,8944

81-100

9

A valószínűségeket a standard-normális eloszlás táblázatból kapjuk.

Ha Z negatív, akkor a hozzá tartozó valószínűség 1 – (ami a táblázatban van)

Aki nem hiszi, olvassa el a mesét a normális eloszlásról.

Ezek a valószínűségek azonban kumuláltak, vagyis nem az adott osztályközhöz, hanem az adott osztályközig az összeshez tartoznak. Úgy lesz belőle , ha mindegyikből kivonjuk az előzőt.

A 21-40 osztályköznél tehát

A 41-60 osztályköznél tehát

pontszám

Normális eloszlást

feltételezve

0-20

12

-1,19

0,1151

0,1151

21-40

16

-0,37

0,3632

0,2481

41-60

25

0,453

0,6736

0,3104

61-80

18

1,27

0,8944

0,2208

81-100

9

0,1056

Az utolsó osztályközbe a maradék valószínűség kerül, vagyis

1 – (az eddigiek összege)

A próba elvégzésekor csak jobb oldali kritikus érték van, ha a mintából kapott érték ennél nagyobb, akkor a nullhipotézist elvetjük.

A szabadságfok .

Itt az osztályközök száma, ami most öt és az adott eloszlás azon paramétereinek száma, amit a mintából becsléssel határozunk meg. Most két paramétert határoztunk meg a mintából, mégpedig -t és -t, így . Ekkor

A jobb oldali kritikus érték

A minta alapján

Ez kisebb, mint a kritikus érték, a hipotézist tehát 10%-os szignifikanciaszinten elfogadjuk.

8.6. A naponta olvasással eltöltött időről terveznek egy felmérést készíteni Német-országban. A népesség korcsoportonkénti megoszlásával egybevetve tekinthető-e reprezentatívnak a felméréshez használt minta 10%-os szignifikanciaszinten?

Életkor

Népesség

(%)

Minta

(db)

0-14

13,5

18

15-34

25

22

35-64

41,5

27

65-

20

13

összesen

100

80

A nullhipotézis legyen az, hogy a minta reprezentatív, vagyis a lakosság életkor szerinti megoszlása a mintában megegyezik a valós értékekkel. A hipotézis a sokaság eloszlására vonatkozik. Az eljárást illeszkedésvizsgálatnak nevezzük és -próbát használunk. A százalékos adatokat átalakítjuk valószínűségekre.

Életkor

Népesség

(%)

Minta

(db)

0-14

0,135

18

15-34

0,250

22

35-64

0,415

27

65-

0,200

13

összesen

1,000

80

ILLESZKEDÉSVIZSGÁLAT, -próba: A sokaság eloszlására irányuló vizsgálat, : mindegyik osztályköz valószínűsége egy adott eloszlásnak megfelelő érték, vagyis minden i-re az i-edik osztályköz valószínűsége a érték.

Az ellenhipotézis pedig, : van olyan osztályköz, ami nem az adott eloszlásnak megfelelő érték. A próbát jobb oldali kritikus értékkel végezzük el, a nullhipotézist az ennél kisebb, az ellenhipotézist az ennél nagyobb értékek igazolják. A minta elemszáma n.

ahol a szabadságfok .

Itt az osztályközök száma és az adott eloszlás azon paramétereinek száma, amit a mintából becsléssel határozunk meg

Most az osztályközök száma k=4, a mintából becsült paraméterek száma pedig b=0, mivel nem becsültünk semmit a mintából. A szabadságfok v=k-b-1=4-0-1=3.

A jobb oldali kritikus érték

A minta alapján

Ez nagyobb, mint a kritikus érték, a nullhipotézist tehát elvetjük. A minta 10%-os szignifikanciaszinten nem tekinthető reprezentatívnak.

8.7. Egy légitársaság felmérést készít az utasok testsúlyával kapcsolatban. Korábbi évek adatai alapján az utasok testsúly szerinti eloszlása közelítőleg normális, 81 kg-os átlaggal és 16 kg szórással.

Ellenőrizzük az eloszlásra és a paraméterekre vonatkozó hipotéziseket az alábbi 141 elemű minta segítségével 5%-os szignifikanciaszinten.

Testtömeg

(kg)

Utasok száma

0-50

13

51-70

23

71-90

56

91-110

38

111-

11

összesen

141

Elsőként az eloszlásra vonatkozó hipotézist ellenőrizzük, ha ugyanis ezt elfogadjuk, és a sokaság eloszlását normálisnak tekintjük, jóval kellemesebb lesz a többi hipotézis vizsgálata. Elvetése esetén marha nagy gondban leszünk például a szórásra vonatkozó állítással, azt ugyanis csak jó közelítéssel normális eloszlású sokaságokra alkalmazhatjuk. Node reméljük a legjobbakat!

A normális eloszlásra vonatkozó hipotézisünket illeszkedésvizsgálattal teszteljük és

-próbát használunk.

ILLESZKEDÉSVIZSGÁLAT, -próba: A sokaság eloszlására irányuló vizsgálat, : mindegyik osztályköz valószínűsége egy adott eloszlásnak megfelelő érték, vagyis minden i-re az i-edik osztályköz valószínűsége a érték.

Az ellenhipotézis pedig, : van olyan osztályköz, ami nem az adott eloszlásnak megfelelő érték. A próbát jobb oldali kritikus értékkel végezzük el, a nullhipotézist az ennél kisebb, az ellenhipotézist az ennél nagyobb értékek igazolják. A minta elemszáma n.

ahol a szabadságfok .

Itt az osztályközök száma és az adott eloszlás azon paramétereinek száma, amit a mintából becsléssel határozunk meg

Testtömeg

(kg)

Utasok száma

0-50

13

51-70

23

71-90

56

91-110

38

111-

11

Ha normális eloszlást tételezünk föl, akkor meg kell adnunk annak két paraméterét, a várható értéket és a szórást. Ezeket a mintából becsléssel állapítjuk meg.

A várható érték a minta átlaga alapján:

A szórás pedig a minta szórása alapján:

Most elkészítjük a normális eloszlásnak megfelelő valószínűségeket.

Ezt úgy kell elképzelnünk, hogy a normális eloszlás harang alakú görbéjét felszeleteljük az osztályközöknek megfelelően öt részre.

Ezeknek a részeknek a területei lesznek a megfelelő valószínűségek.

Kiszámolni úgy tudjuk őket, hogy standardizáljuk az osztályközök határait.

Elegendő csak az alsó vagy csak a felső határokat standardizálni, hiszen ami az egyik szelet felső határa, az a következő szelet alsó határa.

Most válasszuk a felső határokat.

Testtömeg

(kg)

Utasok száma

0-50

13

-1,26

0,1056

51-70

23

-0,42

0,3446

71-90

56

0,41

0,6554

91-110

38

1,24

0,8944

111-

11

1,0000

A valószínűségeket a standard-normális eloszlás táblázatból kapjuk.

Ha Z negatív, akkor a hozzá tartozó valószínűség 1 – (ami a táblázatban van)

Aki nem hiszi, olvassa el a mesét a normális eloszlásról.

Ezek a valószínűségek azonban kumuláltak, vagyis nem az adott osztályközhöz, hanem az adott osztályközig az összeshez tartoznak. Úgy lesz belőle , ha mindegyikből kivonjuk az előzőt.

A 51-70 osztályköznél tehát

A 71-90 osztályköznél tehát

Testtömeg

(kg)

Utasok száma

Normális eloszlást

feltételezve

0-50

13

-1,26

0,1056

0,1056

51-70

23

-0,42

0,3446

0,2390

71-90

56

0,41

0,6554

0,3108

91-110

38

1,24

0,8944

0,2390

111-

11

1,0000

0,1056

Az utolsó osztályközbe a maradék valószínűség kerül, vagyis

1 – (az eddigiek összege)

A próba elvégzésekor csak jobb oldali kritikus érték van, ha a mintából kapott érték ennél nagyobb, akkor a nullhipotézist elvetjük.

A szabadságfok .

Itt az osztályközök száma, ami most öt és az adott eloszlás azon paramétereinek száma, amit a mintából becsléssel határozunk meg. Most két paramétert határoztunk meg a mintából, mégpedig -t és -t, így . Ekkor

A jobb oldali kritikus érték

A minta alapján

Ez bizony nagyobb, mint a kritikus érték, a hipotézist tehát 5%-os szignifikanciaszinten elvetjük, a minta alapján az utasok testsúly szerinti eloszlása nem tekinthető normális eloszlásúnak.

Térjünk rá a paraméterek vizsgálatára. A szórással kapcsolatos hipotézisünket csak normális eloszlás esetén tudtuk volna vizsgálni, így sajnálatos módon ez most kimarad. Az átlaggal kapcsolatos hipotézist aszimptotikus Z-próbával vizsgáljuk a minta nagy elemszámának köszönhetően.

Aszimptotikus Z-próba: A sokaság tetszőleges eloszlású, szórása nem ismert, a sokaság átlagára vonatkozik, a minta n elemű, elemszáma nagy.

A nullhipotézis az, hogy az utasok átlagosan 81 kg-osak.

: , az ellenhipotézis pedig : .

Kétoldali kritikus tartomány és két kritikus érték lesz.

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

ami bőven az elfogadási tartományba esik.

A hipotézist 5%-os szignifikanciaszinten elfogadjuk.

8.8. Egy felmérés során 400 férfit és 400 nőt vizsgáltak meg, hogy megállnak-e kocsijukkal a zebránál, ha a gyalogos a járdán várakozik. A férfiak közül 310-en, a nők közül 215-en álltak meg.

Független-e a nemtől a zebránál való megállás 5%-os szignifikanciaszinten?

Ellenőrizzük azt a hipotézist, hogy a nők a zebránál kevésbé engedik át a gyalogosokat 5%-os szignifikanciaszinten.

FÜGGETLENSÉGVIZSGÁLAT, -próba: A sokaságon belül két ismérv függetlenségére irányuló vizsgálat. : a két ismérv független, az ellenhipotézis pedig, : a két ismérv közti kapcsolat sztochasztikus vagy függvényszerű.

A próbát jobb oldali kritikus értékkel végezzük el, a nullhipotézist az ennél kisebb, az ellenhipotézist az ennél nagyobb értékek igazolják. A minta elemszáma n, a minta alapján készített kontingencia tábla sorainak száma r, oszlopainak száma c.

Ahol a szabadságfok .

megáll

nem áll meg

össz

215

185

400

férfi

310

90

400

össz

525

275

800

A kontingencia tábla sorainak száma r=2 ( az összesen sor nyilvánvalóan nem számít ) oszlopainak száma pedig c=2, így a szabadságfok

A jobb oldali kritikus érték

Az ügymenet megkönnyítése érdekében készítünk egy -os táblázatot.

Ez pontosan úgy készül, mint ahogyan az asszociációs kapcsolat vizsgálatakor, vagyis

megáll

nem áll meg

össz

262,5

137,5

400

férfi

262,5

137,5

400

össz

525

275

800

A kapott érték határozottan nagyobb a kritikus értéknél, így függetlenségről szóló nullhipotézist minden szignifikanciaszinten elvetjük.

Térjünk rá annak a hipotézisnek a vizsgálatára, hogy a nők kisebb arányban állnak meg a zebránál.

megáll

nem áll meg

össz

215

185

400

férfi

310

90

400

össz

525

275

800

Kétmintás Z-próba: Két sokaság sokasági arányának összehasonlítására irányuló próba.

speciális esetben

ahol és a minták elemszáma.

A nullhipotézis : , ahol tetszőleges, de előre megadott érték.

: ekkor az ellenhipotézis : és itt az ellenhipotézist szeretnénk igazolni.

Egyoldali kritikus tartomány és egy kritikus érték lesz:

JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A próbafüggvény

A kapott eredmény minden szignifikanciaszinten az ellenhipotézist igazolja, vagyis a férfiak nagyobb arányban állnak meg a zebránál.

8.9. Egy várostól északra és nyugatra lavinafogó véderdők találhatók. A faállomány állapotának felméréséhez mindkét véderdőben véletlenszerűen kiválasztottak 150 fenyőt, a minták eredményét tartalmazza az alábbi táblázat.

Eltér-e szignifikánsan a két véderdőben a fák átlagos életkora? Szignifikánsan egyformának tekinthetők-e a két véderdő faállománya? A szignifikanciaszint legyen 5%.

Fák életkora

(év)

Északi

véderdő

Nyugati

véderdő

0-10

13

8

11-20

28

32

21-50

67

58

51-100

31

42

101-

11

10

összesen

150

150

Kétmintás aszimptotikus Z-próba: A két sokaság eloszlása és szórása nem ismert, mindkettő szórása véges, és mindkét minta elemszáma elég nagy.

A nullhipotézis : , ahol tetszőleges, de előre megadott érték.

A minták elemszáma és , szórása és .

Válasszuk nullhipotézisnek azt, hogy a két véderdő átlagos életkora megegyezik,

: az ellenhipotézis pedig :

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A próbafüggvény értéke:

Ez az elfogadási tartományba esik, a véderdők átlagéletkora szignifikánsan megegyezik.

A faállományok összehasonlítására homogenitásvizsgálatot alkalmazunk.

HOMOGENITÁSVIZSGÁLAT, -próba: Két sokaságban valamely változó eloszlásának egyezőségére irányuló vizsgálat. : a két sokaságban az eloszlás egyező, az ellenhipotézis pedig, : a két eloszlás nem egyező.

A próbát jobb oldali kritikus értékkel végezzük el, a nullhipotézist az ennél kisebb, az ellenhipotézist az ennél nagyobb értékek igazolják. Mintát ezúttal mindkét sokaságból veszünk, az X sokaságból vett minta elemszáma az Y sokaságból vett mintáé mindkét mintában az osztályközök száma k.

Ahol a szabadságfok .

Mindkét véderdő esetében öt osztályköz van, így k=5 a szabadságfok pedig v=k-1=4.

A jobb oldali kritikus érték

Fák életkora

(év)

Északi

véderdő

Nyugati

véderdő

0-10

13

8

11-20

28

32

21-50

67

58

51-100

31

42

101-

11

10

összesen

150

150

A próbafüggvény

3,81

Ez a kritikus értéknél kisebb, így 5%-os szignifikanciaszinten a két véderdő faállományának életkor szerinti megoszlása megegyezik.

8.10. A nem munkával töltött aktív tevékenység (kertészkedés, sportolás, stb.) megoszlása Magyarországon és Németországban egy-egy 100 elemű minta alapján:

Nem munkával töltött

aktív tevékenység

időtartama naponta

(perc)

HU

DE

0-50

43

10

51-100

30

35

101-150

16

27

151-200

8

20

201-250

3

8

10%-os szignifikanciaszinten a minta alapján azonosak-e a szokások a két országban?

HOMOGENITÁSVIZSGÁLAT, -próba: Két sokaságban valamely változó eloszlásának egyezőségére irányuló vizsgálat. : a két sokaságban az eloszlás egyező, az ellenhipotézis pedig, : a két eloszlás nem egyező.

A próbát jobb oldali kritikus értékkel végezzük el, a nullhipotézist az ennél kisebb, az ellenhipotézist az ennél nagyobb értékek igazolják. Mintát ezúttal mindkét sokaságból veszünk, az X sokaságból vett minta elemszáma az Y sokaságból vett mintáé mindkét mintában az osztályközök száma k.

Ahol a szabadságfok .

Az osztályközök száma öt, a szabadságfok tehát v=k-1=5-1=4.

A jobb oldali kritikus érték

Nem munkával töltött

aktív tevékenység

időtartama naponta

(perc)

HU

DE

0-50

43

10

51-100

30

35

101-150

16

27

151-200

8

20

201-250

3

8

A próbafüggvény

31,16

Ez a kritikus értéknél jóval nagyobb, a két eloszlás szignifikánsan eltér.

8.11. Egy tehenészetben a tehenek tejének zsírtartalmát vizsgálták. A későbbi hasznosítás során nem kedvező, ha a zsírtartalom szórása 10%-nál nagyobb. Literenkénti 5 grammos átlagos zsírtartalommal számolva és feltételezve annak normális eloszlását, szignifikánsan eltér-e a tehenek tejének zsírtartalma a megengedett 10%-tól az alábbi 10 elemű minta alapján?

A tehén

sorszáma

Zsírtartalom

(gramm/liter)

17.

4,7

19.

4,9

34.

5,6

36.

4,3

37.

5,1

38.

5,4

57.

6,1

58.

5,8

63.

4,2

64.

4,2

A szignifikanciaszint legyen 5%.

A minta átlaga

gramm

A minta szórása

A megengedett szórás 10%-os, vagyis 0,5 gramm.

-próba: A sokaság normális eloszlású, a sokasági szórásra vonatkozik, a minta n elemű.

A nullhipotézis az ellenhipotézis pedig : és ilyenkor kétoldali kritikus tartományunk lesz.

A minta elemszáma n=10 így a szabadságfok v=10-1=9.

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

A kapott érték az elfogadási tartományba esik, a tehenek tejének zsírtartalma így a minta alapján megfelel a további hasznosításra.

8.12. Egy első osztályú almaszállítmányban az almák tömegének átlaga 110 gramm, megengedett szórása 20 gramm lehet. Ellenőrizzük 85 elemű minta alapján, hogy egy adott szállítmány megfelel-e az előírásoknak. Az almák méretének eloszlását nem ismerjük, a szignifikanciaszint legyen 10%.

alma tömege

(gramm)

50-69

12

70-89

16

90-109

25

110-129

24

130-159

8

Elsőként megvizsgáljuk, hogy az almák méretének eloszlása tekinthető-e normális eloszlásnak. Ha ugyanis nem, akkor marha nagy gondban leszünk a szórásra vonatkozó állítás vizsgálatával, azt ugyanis csak jó közelítéssel normális eloszlású sokaságokra alkalmazhatjuk. Node reméljük a legjobbakat!

ILLESZKEDÉSVIZSGÁLAT, -próba: A sokaság eloszlására irányuló vizsgálat, : mindegyik osztályköz valószínűsége egy adott eloszlásnak megfelelő érték, vagyis minden i-re az i-edik osztályköz valószínűsége a érték.

Az ellenhipotézis pedig, : van olyan osztályköz, ami nem az adott eloszlásnak megfelelő érték. A próbát jobb oldali kritikus értékkel végezzük el, a nullhipotézist az ennél kisebb, az ellenhipotézist az ennél nagyobb értékek igazolják. A minta elemszáma n.

ahol a szabadságfok .

Itt az osztályközök száma és az adott eloszlás azon paramétereinek száma, amit a mintából becsléssel határozunk meg

Ha normális eloszlást tételezünk föl, akkor meg kell adnunk annak két paraméterét, a várható értéket és a szórást. Ezeket a mintából becsléssel állapítjuk meg.

A várható érték a minta átlaga alapján:

A szórás pedig a minta szórása alapján:

Most elkészítjük a normális eloszlásnak megfelelő valószínűségeket.

Ezt úgy kell elképzelnünk, hogy a normális eloszlás harang alakú görbéjét felszeleteljük az osztályközöknek megfelelően öt részre.

Ezeknek a részeknek a területei lesznek a megfelelő valószínűségek.

Kiszámolni úgy tudjuk őket, hogy standardizáljuk az osztályközök határait.

Elegendő csak az alsó vagy csak a felső határokat standardizálni, hiszen ami az egyik szelet felső határa, az a következő szelet alsó határa.

Célszerűbb azonban a felső határokat választani.

alma tömege

(gramm)

50-69

12

-1,292

0,0968

70-89

16

-0,458

0,3264

90-109

25

0,375

0,6461

110-129

24

1,208

0,8849

130-159

8

A valószínűségeket a standard-normális eloszlás táblázatból kapjuk.

Ha Z negatív, akkor a hozzá tartozó valószínűség 1 – (ami a táblázatban van)

Aki nem hiszi, olvassa el a mesét a normális eloszlásról.

Ezek a valószínűségek azonban kumuláltak, vagyis nem az adott osztályközhöz, hanem az adott osztályköz alsó határáig tartozó valószínűségek. Azért az alsó határig, mert az alsó határokat standardizáltuk.

Úgy lesz belőle , ha mindegyikből kivonjuk az előzőt.

Az 50-69 osztályköznél tehát mert itt nincs előző

A 70-89 osztályköznél

A 90-109 osztályköznél

alma tömege

(gramm)

Normális eloszlást

feltételezve

50-69

12

-1,292

0,0968

0,0968

70-89

16

-0,458

0,3264

0,2296

90-109

25

0,375

0,6461

0,3197

110-129

24

1,208

0,8849

0,2388

130-159

8

0,1151

Az utolsó osztályközbe a maradék valószínűség kerül, vagyis

1 – (az eddigiek összege)

A próba elvégzésekor csak jobb oldali kritikus érték van, ha a mintából kapott érték ennél nagyobb, akkor a nullhipotézist elvetjük.

A szabadságfok .

Itt az osztályközök száma, ami most öt és az adott eloszlás azon paramétereinek száma, amit a mintából becsléssel határozunk meg. Most két paramétert határoztunk meg a mintából, mégpedig -t és -t, így . Ekkor

A jobb oldali kritikus érték

A minta alapján

Ez kisebb, mint a kritikus érték, a hipotézist tehát 10%-os szignifikanciaszinten elfogadjuk.

Térjünk rá a paraméterek vizsgálatára. Mivel az eloszlás normális, a szórásra vonatkozó hipotézisre alkalmazhatjuk a -próbát.

-próba: A sokaság normális eloszlású, a sokasági szórásra vonatkozik, a minta n elemű.

A nullhipotézis az ellenhipotézis pedig : és ilyenkor kétoldali kritikus tartományunk lesz.

A minta elemszáma n=85 így a szabadságfok v=85-1=84.

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A minta alapján

A kapott érték az elfogadási tartományon kívül esik, a szórás a minta alapján a megengedettnél nagyobb.

Térjünk rá az átlag ellenőrzésére. Mivel a szórás a jelek szerint egyáltalán nem az előírt 20 gramm, ezért az átlagra vonatkozó hipotézis vizsgálatánál a tényleges szórást ismeretlennek tekintve, a minta szórására hagyatkozunk.

t-próba: A sokaság normális eloszlású, szórása nem ismert, a sokaság

átlagára vonatkozik, a minta elemszáma n.

A nullhipotézis : gramm, az ellenhipotézis pedig : gramm

A szabadságfok v=n-1=85-1=84

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

Ez bőven az elfogadási tartományon kívül esik, tehát az átlagos tömeg sem felel meg a szabványnak.

8.13. Kétféle juhfajta, a német húsmerinó és az Új-Zélandi Romney gyapjújának finomságát vizsgáltuk meg. A német húsmerinó gyapjújának finomsága egy ötelemű minta alapján 26 mikron, 27 mikron, 22 mikron, 28 mikron, 30 mikron.

Az Új-Zélandi Romney gyapjúját egy hatelemű mintával vizsgáltuk, ennek eredménye

30 mikron, 28 mikron, 32 mikron, 33 mikron, 29 mikron, 30 mikron.

Ellenőrizzük 10%-os szignifikanciaszinten, az alábbi állításokat:

a) A Romney gyapjának szálvastagsága nagyobb

b) A Romney gyapjának szálvastagsága 4 mikronnal nagyobb

c) A kétféle juh gyapjú-szálvastagságának szórása megegyezik

Elsőként a szórásokra vonatkozó állítást vizsgáljuk.

F-próba: Két sokaság szórásának összehasonlítására irányuló próba, ha mindkét sokaság normális eloszlású. A nullhipotézis :

az F-eloszlás két szabadságfoka és , ahol és a két minta elemszáma. Célszerű 1-es sokaságnak mindig a nagyobb szórással rendelkezőt nevezni.

A kritikus értékek az összefüggés alapján:

BAL OLDALI KRITIKUS TARTOMÁNY ESETÉN:

KÉTOLDALI KRITIKUS TARTOMÁNY ESETÉN: ÉS

JOBB OLDALI KRITIKUS TARTOMÁNY ESETÉN:

Az 1-es sokaság legyen a nagyobb szórással rendelkező német merinó. Ekkor

így

így

A nullhipotézis : vagyis kétoldali kritikus tartományunk és így két kritikus értékünk lesz, amiket az F-eloszlás táblázatából keresünk ki.

A szignifikanciaszint , ekkor

és

A minta alapján

Ez az elfogadási tartományba esik, a kétféle juh gyapjú-szálvastagságának tehát a minta alapján szignifikánsan ugyanakkora a szórása.

Most térjünk rá az átlagokkal kapcsolatos állításokra. Mivel a szórások megegyeznek, használhatunk t-próbát.

A német húsmerinó gyapjának átlagos szálvastagsága legyen a a másiké pedig a . Azt az állítást, hogy a Romney gyapjának szálvastagsága nagyobb, úgy írhatjuk fel, hogy:

Átrendezve

Mivel ebben az állításban nincs megengedve az egyenlőség, ez nullhipotézis nem lehet, csak ellenhipotézis, mert a nullhipotézisben mindig szerepelnie kell egyenlőségnek is. Így hát akkor ez az ellenhipotézis:

A hozzá tartozó nullhipotézis pedig

Az átlagok tesztelésére, mivel a juhok gyapjú-vastagságának szórása nem ismert, ezt csak a mintából fogjuk tudni kiszámolni, ezért t-próbát használunk.

Kétmintás t-próba:

itt

A nullhipotézis : , ahol tetszőleges, de előre megadott érték.

A minták elemszáma és , szórása és , a szabadságfok

A minták alapján

Német merinó:

Új-Zélandi Romney:

most

A próbafüggvény értéke:

A nullhipotézis az, hogy tehát bal oldali elfogadási tartomány lesz, amihez jobb oldali kritikus érték tartozik.

A szabadságfok =5+6-2=9

JOBB OLDALI KRITIKUS ÉRTÉK:

A próbafüggvény értéke nem esik bele az elfogadási tartományba, így a nullhipotézist elvetjük, és ezzel egyidejűleg a ellenhipotézist elfogadjuk. Vagyis 10%-os szignifikanciaszinten kijelenthető, hogy tehát a Romney juh gyapjának átlagos szálvastagsága nagyobb.

Vizsgáljuk meg 10%-os szignifikanciaszinten azt az állítást, hogy a Romney gyapjának szálvastagsága 4 mikronnal nagyobb.

Ekkor a

próbafüggvényben annyi változás történik mindössze, hogy .

A nullhipotézis most az, hogy az átlagok eltérése éppen 4, tehát

Most kétoldali kritikus tartomány lesz, a szabadságfok továbbra is

=12+12-2=22

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

Ebbe a próbafüggvény értéke beleesik, tehát elfogadjuk azt az állítást, hogy a Romney átlagos szálvastagsága 4 mikronnal nagyobb.

8.14. 200 fő részvételével tesztelték egy vitaminkészítmény hatékonyságát. 100-an rendszeresen szedték a készítményt, míg a másik 100 résztvevő egyáltalán nem szedett semmit, vagy másfajta vitaminokat szedett. Az évente betegség miatt kieső munkanapok számát hasonlították össze a két csoportban, ezek eloszlását normális eloszlásúnak tekinthetjük. 5%-os szignifikanciaszinten mi mondható az alábbi állításokról?

csoportok

Betegség miatt kieső munkanapok

átlaga

szórása

Szedték a

készítményt

7,2

3,7

Nem szedték a

készítményt

7,8

3,4

Megegyezik-e a két csoportban a kieső munkanapok átlaga és szórása?

Szignifikánsan eltér-e a betegség miatt kieső munkanapok száma a két csoportban?

Az átlag vizsgálatával kezdünk. Sajnos azonban csak a minta szórásai állnak rendelkezésre, így nem használhatunk Z-próbát. Ugyanakkor a minta elemszáma elég nagy, tehát aszimptotikus Z-próbát fogunk használni.

Kétmintás aszimptotikus Z-próba: A két sokaság eloszlása és szórása nem ismert, mindkettő szórása véges, és mindkét minta elemszáma elég nagy.

A nullhipotézis : , ahol tetszőleges, de előre megadott érték.

A minták elemszáma és , szórása és .

A nullhipotézis az, hogy a készítmény nincs hatással a betegség miatt kimaradó munkanapok számára, így az mindkét csoportban megegyezik.

:

BAL OLDALI KRITIKUS ÉRTÉK: JOBB OLDALI KRITIKUS ÉRTÉK:

ELFOGADÁSI TARTOMÁNY:

A próbafüggvény értéke:

Ez az elfogadási tartományba esik, így a nullhipotézist elfogadjuk, a két csoport átlaga megegyezik, a készítmény hatása 5%-os szignifikanciaszinten nem kimutatható.

Vizsgáljuk meg a szórásokat is.

F-próba: Két sokaság szórásának összehasonlítására irányuló próba, ha mindkét sokaság normális eloszlású. A nullhipotézis :

az F-eloszlás két szabadságfoka és , ahol és a két minta elemszáma. Célszerű 1-es sokaságnak mindig a nagyobb szórással rendelkezőt nevezni.

A kritikus értékek az összefüggés alapján:

KÉTOLDALI KRITIKUS TARTOMÁNY ESETÉN: ÉS

Mindkét csoport elemszáma 100:

így

így

A nullhipotézis : vagyis kétoldali kritikus tartományunk és így két kritikus értékünk lesz, amiket az F-eloszlás táblázatából keresünk ki.

A szignifikanciaszint , ekkor

és

A minta alapján

Ez az elfogadási tartományba esik, így a két csoport szórása a minta alapján ugyancsak megegyezik.

Annak vizsgálatára, hogy szignifikánsan eltér-e a betegség miatt kieső munkanapok száma a két csoportban, varianciaanalízist használunk.

VARIANCIAANALÍZIS: Több sokaság várható értékének összehasonlítására vonatkozó próba, ha mindegyik sokaság normális eloszlású és azonos szórású.

A nullhipotézis: , vagyis az, hogy a várható értékek az összes sokaságra (M db) megegyeznek, míg az ellenhipotézis az, hogy van olyan amire .

A részsokaságokból vett minták, a részsokaságok száma M.

minta

elemszám

átlag

szórás

1-es részsokaság

2-es részsokaság

j-edik részsokaság

összesen

A próbafüggvény

A két szabadságfok és , a próba jobb oldali kritikus értékkel hajtandó végre:

JOBB OLDALI KRITIKUS ÉRTÉK:

VARIANCIAANALÍZIS-TÁBLÁZAT

SZÓRÓDÁS

OKA

ELTÉRÉS-

NÉGYZETÖSSZEG

SZABADSÁG-

FOK

ÁTLAGOS

NÉGYZETÖSSZEG

F

p-ÉRTÉK

Részsokaságra

bontás miatt

Részsokaságon

belüli hiba

össz.

A próba elvégzésének feltétele, hogy minden sokaság normális eloszlású és azonos szórású legyen. Most tételezzük föl, hogy ezek a feltételek teljesülnek. Kiszámoljuk a minta részátlagait és rész-szórásait, majd az SSK és SSB eltérés-négyzetösszegeket.

minta

elemszám

átlag

szórás

Szedték a

készítményt

100

Nem szedték a

készítményt

100

összesen

200

A szabadságfok és a próbafüggvény

A 5%-os szignifikanciaszinthez tartozó jobb oldali kritikus érték:

A próbafüggvény érték az elfogadási tartományba esik, így a minta alapján azt kell állítanunk, hogy nincs eltérés a kétféle csoportban a megbetegedés miatt kieső munkanapok száma között.

 

HIPOTÉZIS-VIZSGÁLAT MENETE

02
Itt jön egy fantasztikus
Statisztika 2 epizód.

Hozzászólások

Még nincs hozzászólás. Legyél Te az első!