Adatelemzés 2 | mateking
 
12 témakör, 217 rövid és szuper érthető epizód
Ezt a nagyon laza Adatelemzés 2 kurzust úgy terveztük meg, hogy egy csapásra megértsd a lényeget. Tudásszinttől függetlenül, teljesen az alapoktól magyarázzuk el a tananyagot, a saját ritmusodban lépésről lépésre. Így tudjuk a legbonyolultabb dolgokat is elképesztően egyszerűen elmagyarázni.
3 450 Forint

Tartalomjegyzék: 

A kurzus 12 szekcióból áll: Kombinatorika, Valszám alapok, klasszikus valszám, Teljes valószínűség tétele, Bayes tétel, Eloszlás, eloszlásfüggvény, sűrűségfüggvény, Várható érték és szórás, Markov és Csebisev egyenlőtlenségek, A binomiális eloszlás és a hipergeometriai eloszlás, Nevezetes diszkrét és folytonos eloszlások, Becslések, Hipotézisvizsgálat, Regressziószámítás, Idősorok

STATISZTIKAI BECSLÉSEK - Statisztikai becslések, pontbecslés, intervallumbecslés, standard hiba, mintavételi hiba, nemmintavételi hiba, FAE-minta, EV-minta,rétegzett minta, többlépcsős minta, torzítatlanság, minimális variancia elve, konfidencia szint, konfidencia tartomány, sokasági átlag becslése, sokasági arány becslése, sokasági variancia.

HIPOTÉZISVIZSGÁLAT - A hipotézisvizsgálat menete, nullhipotézis, ellenhipotézis, szignifikanciaszint, elsőfajú és másodfajú hiba, próbafüggvény, próbák, kritikus tartomány, kritikus érték, paraméteres próbák, nemparaméteres próbák, Z-próba, t-próba, khí-négyzet-próba, homogenitás- vizsgálat, illeszkedésvizsgálat, függetlenségvizsgálat, F-próba, varianciaanalízis, Bartlett-próba.

REGRESSZIÓSZÁMÍTÁS - Regresszió alapötlete, magyarázó változók, eredményváltozó, proxy változó, dummy változó, lineáris kétváltozós regresszió, reziduumok, reziduális szórás, korreláció, kovariancia, elaszticitás, többváltozós lineáris regressziós modell, paraméterek becslése, elaszticitás, korrelációs mátrix, kovariancia mátrix, standard lineáris modell, paraméterek intervallumbecslése, paraméterek szeparált tesztelése, t-próba, modell tesztelése, autokorreláció, nem lineáris regressziók.

IDŐSOROK - Állapot idősor, tartam idősor, változás üteme és mértéke, kronologikus átlag, mozgóátlagok, mozgóátlagolású trend, simítás, szűrés, dekompozíciós idősormodellek, lineáris trend, exponenciális trend, trendegyenlet, normálegyenletek, szezonalitás, szezonális eltérés, szezonindex, szezonalitással kiigazított trend, szezonalitástól megtisztított trend.

Kombinatorika

  • -

    Ismétlés nélküli kombinációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendjére nem vagyunk tekintettel.

  • -

    Egy adott n elemű halmaz elemeinek egy ismétlés nélküli permutációján az n különböző elem egy sorba rendezését értjük.

  • -

    Ismétlés nélküli variációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendje is számít.

  • -

    Ismétléses permutációról akkor beszélünk, ha n elem sorrendjére vagyunk kiváncsiak, de ezen elemek között vannak megegyezőek is.

  • -

    Ismétléses variációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendje is számít és egy elemet többször is választhatunk.

  • -

    Ha kör alakban helyezünk el n különböző elemet és azok sorrendjét vizsgáljuk, akkor ciklikus permutációról beszélünk.

Valszám alapok, klasszikus valszám

Teljes valószínűség tétele, Bayes tétel

Eloszlás, eloszlásfüggvény, sűrűségfüggvény

Várható érték és szórás

Markov és Csebisev egyenlőtlenségek

Nevezetes diszkrét és folytonos eloszlások

Becslések

  • -

    Módszer az átlag intervallumbecslésére, ha a sokasági szórás ismert.

  • -

    Olyan esetekben, amikor valamiért nem tudjuk vagy nem akarjuk a teljes sokaságot megvizsgálni, hogy meghatározzuk a fontosabb statisztikai mutatóit, becslést alkalmazunk.

  • -

    Az $1- \alpha$ megbízhatósági szinthez, vagy másként konfidencia szinthez tartozó konfidencia intervallumok azok az intervallumok, amik a sokasági átlagot $1-\alpha$ valószínűséggel tartalmazzák.

  • -

    A megbízhatósági szintet konfidencia szintnek nevezzük.

  • -

    Módszer arány intervallumbecslésére.

  • -

    Módszer átlag intervallumbecslésére, ha a sokasági szórás nem ismert.

  • -

    A FAE minta azt jelenti, hogy a mintavétel során bármely mintaelemet azonos eséllyel választunk ki.

  • -

    Módszer variancia intervallumbecslésre.

  • -

    Módszer arány intervallumbecslésére EV-minta esetén.

  • -

    Módszer átlag intervallumbecslésre, ha a sokasági szórás nem ismert (EV-minta).

  • -

    Az EV-minta abban különbözik a FAE-mintától, hogy a kiválasztott mintaelemek nem függetlenek egymástól.

  • -

    Ha a teljes sokaságot felosztjuk viszonylag homogén rétegekre, és a mintát is ezen a rétegek szerint vizsgáljuk, a variancia csökkenthető.

  • -

    Ha mindkét sokaság közel normális eloszlású, akkor az átlagok különbségének becslésére ez a formula van forgalomban.

  • -

    A kétmintás becslésekre akkor van szükség, amikor két sokaság valamilyen paraméterét, leginkább az átlagát szeretnénk összehasonlítani.

  • -

    Egy becslést torzítatlannak nevezünk, ha az egyes mintákból kapott becslések várható értéke megegyezik a becsülni kívánt mennyiséggel.

  • -

    A kérdés az, hogy ha egy sokasági jellemzőre több becslés jöhet szóba, hogyan válasszunk közülük, vagyis mikor tekintünk egy becslést jónak, kettő közül melyiket tekintjük jobbnak és kijelenthetjük-e valamelyikről, hogy a legjobb?

  • -

    Két becslés közül azt részesítjük előnyben, amelyre MSE kisebb.

  • -

    Mintavételi hibának azokat a hibákat nevezzük, amik kimondottan azért fordulnak elő, mert nem tudjuk, vagy nem akarjuk a teljes sokaságot vizsgálni.

  • -

    A standard hiba azt mondja meg, hogy a mintaátlagok mekkora szórással ingadoznak a tényleges sokasági átlag körül.

  • -

    Az egységkör egy szöggel elforgatott egységvektorának végpontjának x koordinátáját nevezzük a szög koszinuszának

  • -

    Az egységkör egy szöggel elforgatott egységvektorának végpontjának y koordinátáját nevezzük a szög szinuszának.

  • -

    Szinuszt és koszinuszt tartalmazó egyenletek megoldásának lépései.

  • -

    Egy szög tangense a szög szinuszának és koszinuszának hányadosával egyenlő.

  • -

    Trigonometriai képlet összefoglaló. Összefüggések a tangens és kotangens között. A trigonometria alapegyenlete. Szögek kétszeresének szinusza és koszinusza.

Hipotézisvizsgálat

  • -

    Az elfogadási tartomány az a tartomány, ahová ha a próba értéke kerül, akkor a nullhipotézist elfogadjuk.

  • -

    A kritikus tartomány az a tartomány, ahová ha a próba értéke kerül, akkor a nullhipotézist elvetjük.

  • -

    A szignifikanciaszint a hibás döntés valószínűsége.

  • -

    A hipotézis megfogalmazása. A próbafüggvény kiválasztása. Szignifikanciaszint és kritikus tartomány. Mintavétel és döntés.

  • -

    A sokaság normális eloszlású, szórása $\sigma$, $H_0$ a sokaság átlagára vonatkozik, a minta elemszáma $n$.

  • -

    A sokaság normális eloszlású, szórása nem ismert, $H_0$ a sokaság átlagára vonatkozik, a minta elemszáma $n$

  • -

    A sokaság tetszőleges eloszlású, szórása nem ismert, $H_0$ a sokaság átlagára vonatkozik, a minta $n$ elemű, elemszáma nagy.

  • -

    A sokaság tetszőleges eloszlású, $H_0$ a sokasági arányra vonatkozik, a minta $n$ elemű, elemszáma nagy

  • -

    A sokaság normális eloszlású, $H_0$ a sokasági szórásra vonatkozik, a minta $n$ elemű.

  • -

    A sokaság eloszlására irányuló vizsgálat.

  • -

    A sokaságon belül két ismérv függetlenségére irányuló vizsgálat. $H_0$: a két ismérv független, az ellenhipotézis pedig, $H_1$: a két ismérv közti kapcsolat sztochasztikus vagy függvényszerű.

  • -

    Két sokaságban valamely változó eloszlásának egyezőségére irányuló vizsgálat. $H_0$: a két sokaságban az eloszlás egyező, az ellenhipotézis pedig, $H_1$: a két eloszlás nem egyező.

  • -

    Mindkét sokaság normális eloszlású, szórásaik $\sigma_X$ és $\sigma_Y$.

  • -

    A két sokaság normális eloszlású és szórásaik egyformák.

  • -

    A két sokaság eloszlása és szórása nem ismert, mindkettő szórása véges, és mindkét minta elemszáma elég nagy.

  • -

    Két sokaság szórásának összehasonlítására irányuló próba, ha mindkét sokaság normális eloszlású. A nullhipotézis $H_0$: $\sigma_1^2 = \sigma_2^2$

  • -

    Több sokaság várható értékének összehasonlítására vonatkozó próba, ha mindegyik sokaság normális eloszlású és azonos szórású.

  • -

    A Bartlett-próba több sokaság szórásának összehasonlítására vonatkozó próba, ha mindegyik sokaság normális eloszlású.

Regressziószámítás

  • -

    A regressziószámítás lényege annak vizsgálata, hogy egy bizonyos változó, amit eredményváltozónak hívunk, hogyan függ más változók, az úgynevezett magyarázó változók alakulásától.

  • -

    A magyarázóerőt méri az úgynevezett determinációs együttható.

  • -

    A lineáris korrelációs együttható azt méri, hogy x és y között milyen szoros lineáris kapcsolat van.

  • -

    Ha az SSE értékeit elosztjuk a megfigyelt pontok számával és a kapott eredménynek vesszük a gyökét, akkor kapjuk a reziduális szórást.

  • -

    A regressziós egyenes egy lineáris függvény, ami mindegyik x-hez hozzárendel valamilyen y-t. Ezek általánan eltérnek a valódi y-októl. Ezeket az eltéréseket reziduumoknak nevezzük.

  • -

    A reziduumokból képzett mutató az úgynevezett SSE, jelentése sum of squares of the errors vagyis eltérés-négyzetösszeg.

  • -

    Az exponenciális modellben y helyett lg y van, az x viszont marad x, $\hat{b}_1$ helyett pedig $\lg{ \hat{b}_1}$ van.

  • -

    A hatványkitevős modellben y helyett lg y, x helyett lg x van, $\hat{b}_1$ viszont marad $\hat{b}_1$

  • -

    Az elaszticitás két összefüggő jelenség közti kapcsolat.

  • -

    A paraméterek és a regresszió becslése standard lineáris modellben.

  • -

    5 feltétel standard lineáris modellhez.

  • -

    Az egységkör egy szöggel elforgatott egységvektorának végpontjának x koordinátáját nevezzük a szög koszinuszának

  • -

    Az egységkör egy szöggel elforgatott egységvektorának végpontjának y koordinátáját nevezzük a szög szinuszának.

  • -

    Szinuszt és koszinuszt tartalmazó egyenletek megoldásának lépései.

  • -

    Egy szög tangense a szög szinuszának és koszinuszának hányadosával egyenlő.

  • -

    A többváltozós regressziós modelleket olyankor alkalmazzuk, amikor az eredményváltozó alakulását több magyarázó változó tükrében vizsgáljuk.

  • -

    Trigonometriai képlet összefoglaló. Összefüggések a tangens és kotangens között. A trigonometria alapegyenlete. Szögek kétszeresének szinusza és koszinusza.

  • -

    A kétváltozós esethez hasonlóan a korreláció itt is a változók közti kapcsolat szorosságát írja le, csakhogy itt egy fokkal rosszabb a helyzet, ugyanis most bármely két változó korrelációját vizsgálhatjuk. Ezt tartalmazza a korrelációmátrix.

  • -

    A tesztelés úgy zajlik, hogy nullhipotézisnek tekintjük a $H_0 :  b_i = 0$ feltevést, ellenhipotézisnek pedig azt, hogy $H_1  :  b_i \neq 0$.

  • -

    Négyzetösszeg, szabadságfok, átlagos négyzetösszeg, F.

  • -

    Az autokorreláció a regresszió maradéktagjának a saját későbbi értékeivel való korrelációját jelenti, vagyis egyfajta szabályszerűséget a maradékváltozóban.

  • -

    A Durbin-Wattson-teszt lényegében egy hipotizésvizsgálat.

  • -

    A multikollinearitás röviden összefoglalva azt jelenti, hogy két vagy több magyarázó változó között túl szoros korrelációs kapcsolat van, és ez zavarja a becslést.

Idősorok

  • -

    A függvény hozzárendelésének megfordításával kapjuk a függvény inverzfüggvényét, amennyiben a megfordított hozzárendelés is egy egyértelmű hozzárendelés.