Alkalmazott matematika 1
A kurzus 11 szekcióból áll: Komplex számok, Maradékosztályok, Független és összefüggő vektorok, Egy kis geometria, Mátrixok és vektorok, Determináns, sajátérték, sajátvektor, Lineáris egyenletrendszerek, mátrixok inverze, Lineáris leképezések, Oszthatóság, Euklideszi algoritmus & Diofantoszi egyenletek, Kongruenciák
Komplex számok
- -
Komplex számok összeadásakor összeadjuk a valós részeket és külön összeadjuk a képzetes részeket. Kivonáskor külön kivonjuk egymásból a valós részeket és a képzetes részeket.
- -
Egy képlet az a+bi alakú komplex számok szorzásához.
- -
A komplex számok egy valós és egy imaginárius (képzetes) számból épülnek föl. A valós számok a szokásos x tengelyen helyezkednek el, míg az imaginárius számok egy erre merőleges y tengelyen, amit imaginárius tegelynek, vagy képzetes tengelynek nevezünk.
- -
Olyan számok, amelyek valós és képzetes részből épülnek fel.
- -
A valós számokat úgy érdemes elképzelni, mint egy koordinátarendszer x tengelyét. És minden helyet ki is töltenek a valós számok ezen a számegyenesen. A komplex számok egy valós és egy imaginárius (képzetes) részből épülnek föl, és szemléltetésükhöz nem egy, hanem két koordinátatengelyre van szükség. Az x tengelyen vannak a valós számok, az y tengelyen pedig az imaginárius, vagyis a képzetes számok. A valós számok tengelyén az egység a szokásos 1, míg az imaginárius számok tengelyén az egység az i. A kétb tengely által kifeszített síkot nevezzük komplex számsíknak, vagy másknt Gauss-féle számsíknak.
- -
A komplex szám tükörképe az x tengelyre.
- -
Egy komplex szám abszolútértéke az origotól mért távolsága.
- -
A komplex számok osztását, szorzását és hatványozását megkönnyítő forma.
- -
Képlet komplex számok szorzásához és osztásához, ha azok trigonometrikus alakban vannak megadva.
- -
Egy képlet komplex számok hatványozásához, ha a komplex szám trigonometrikus alakban van.
- -
Egy képlet komplex számok gyökvonásához, ha a komplex szám trigonometrikus alakban van.
- -
Képlet komplex számok szorzásához és összeadásához, ha a komplex számok exponenciális alakban vannak megadva.
- -
Egy képlet komplex számok hatványozásához, ha a komplex szám exponenciális alakban van.
- -
Egy képlet komplex számok gyökvonásához, ha a komplex szám exponenciális alakban van.
Maradékosztályok
- -
Egy adott $m$ modulus esetén az $a$-val kongruens elemek halmazát az $a$ által reprezentált maradékosztálynak nevezzük.
- -
Egy mod $m$ modulus esetén az $m$-hez relatív prím elemekből álló maradékosztályokat redukált maradékosztálynak nevezzük.
Független és összefüggő vektorok
- -
A vektorösszeadás kommutatív, asszociatív, létezik nullelem és létezik ellentett. A skalárszoros asszociatív, disztributív a vektorokra és a skalárokra is, és létezik egységszeres.
- -
Egy vektorrendszer akkor lineárisan független, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.
- -
Egy vektorrendszer akkor lineárisan összefüggő, ha a vektorok lineáris kombinációjaként a nullvektor úgy is elő tud állni, hogy nem minden szorzótényező 0.
- -
Vektorok generátor-rendszert alkotnak, ha minden vektortérbeli vektor elő áll az ő lineáris kombinációjuként.
- -
Egy vektorrendszer akkor alkot független rendszert, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.
- -
A bázis független generátorrendszer.
- -
Egy vektorrendszer rangja a benne lévő független vektorok maximális száma
- -
W altér V-ben, ha részhalmaza és maga is vektortér a V-beli műveletekre. Nos ez remek, de nézzük meg, mit is jelet mindez.
- -
Egy vektor akkor állítható egy vektorrendszerrel, ha előáll azon vektorok lineáris kombinációjaként.
Egy kis geometria
- -
A vektor egy irányított szakasz.
- -
Vektorok összeadásakor összeadjuk az x koordinátákat és összeadjuk az y koordinátákat. Kivonáskor vesszük az x koordináták különbségét és az y koordináták különbségét.
- -
Egy vektor hosszát megkapjuk, ha vesszük a koordinátái négyzetösszegének a gyökét. Két pont távolsága az őket összekötő vektor hossza.
- -
Két pont közti vektor a végpontba mutató helyvektor minusz a kezdőpontba mutató helyvektor.
- -
Két vektor skaláris szorzata a vektorok hosszának szorzata a közbezárt szögük koszinuszával.
- -
Egy vektor 90°-os elforgatásához megcseréljük a két koordinátáját és az egyik előjelét megváltoztatjuk.
- -
Két vektor skalárisszorzatát kiszámolhatjuk a vektorok hosszának és hajlásszögének segítségével, illetve a vektorok koordinátáival is.
- -
Két vektor merőleges egymásra, ha skaláris szorzatuk 0.
- -
Az egyenes egyenletének felírásához kell egy pontja és egy normálvektora.
- -
A sík egyenletének felírásához kell egy pontja és egy normálvektora.
- -
Két pont közti vektort a vektorok koordinátáinak különbségével írhatunk fel.
- -
Két pont távolsága gyök alatt a koordináták különbségeinek négyzetösszege.
- -
Az egyenes egyenletének felírásához a síkban szükségünk van az egyenes egy pontjára és a normálvektorára.
- -
A sík egyenletének felírásához kell a sík egy pontja és a normálvektora.
- -
Két vektor vektoriális szorzatát egy 3x3-as mátrix determinánsával számíthatjuk ki, ahol a mátrix első sora egységvektorok, a második és harmadik sora pedig az a és b vektorok.
- -
Két vektor vektoriális szorzata egy olyan harmadik vektort ad, ami merőleges a két vektor által kifeszített síkra.
Mátrixok és vektorok
- -
- -
Ha egy mátrixot egy számmal szorzunk, akkor a mátrix összes elemét meg kell szorozni a számmal.
- -
Ha egy mátrixot osztunk egy számmal, akkor a mátrix minden elemét osztani kell a számmal.
- -
Két mátrix összeadásakor összeadjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet összeadni, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix kivonásakor kivonjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet kivonni egymásból, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix szorzata akkor létezik, ha a bal oldali mátrix oszlopainak száma megegyezik a jobb oldali mátrix sorainak számával. Az eredménymátrix i-edik sorának j-edik elemét úgy kapjuk, hogy a bal oldali mátrix i-edik sorát skalárisan szorozzuk a jobb oldali mátrix j-edik oszlopával. (Tehát az első elemet az elsővel, a másodikat a másodikkal stb. szorozzuk, majd összeadjuk)
- -
A mátrix összeadás kommutatív és asszociatív.
- -
A mátrixszorzás nem kommutattív, de asszociatív.
- -
A kvadratikus mátrix négyzetes mátrix vagyis ugyanannyi sora van, mint oszlopa.
- -
A diagonális mátrix olyan kvadratikus mátrix, aminek a főátlóján kívüli elemek nullák.
- -
Az egységmátrixok olyan diagonális mátrixok, aminek minden főátló-eleme egy.
- -
Az inverz mátrix egy olyan mátrix, hogy ha azzal szorozzuk az eredeti mátrixot, akkor egységmátrixot kapunk. Ha balról szorozva kapunk egységmátrixot, akkor bal inverz, ha jobbról szorozva, akkor jobb inverz mátrix.
- -
A transzponált a mátrix sorainak és oszlopainak felcserélése.
- -
Azokat a mátrixokat, melyek transzponáltjuk önmaga, szimmetrikus mátrixnak nevezzük.
- -
Vektort egy számmal úgy szorzunk, hogy a vektor minden koordinátáját megszorozzuk a számmal.
- -
Vektort egy számmal úgy osztunk, hogy a vektor minden koordinátáját leosztjuk a számmal.
- -
Két vektort úgy adunk össze, hogy minden egyes koordinátájukat külön-külön össze adjuk.
- -
Két vektort úgy vonunk ki egymásból, hogy minden egyes koordinátájukat külön-külön kivonjuk egymásból.
- -
A skaláris szorzat két vektor közti művelet, ami csinál belőlük egy számot.
- -
Két vektor diadikus szorzata egy mátrix. Lássuk milyen.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak sorait.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak egy oszlopában lévő elemeit.
- -
Ha egy mátrixot megszorzunk jobbról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik oszlopát.
- -
Ha egy mátrixot megszorzunk balról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik sorát.
Determináns, sajátérték, sajátvektor
- -
A determináns úgy működik, hogy minden négyzetes mátrixból csinál egy valós számot. Hogy miért, és, hogy hogyan, az mindjárt kiderül.
- -
Egy 2x2-es mátrix determinánsát úgy kapjuk, hogy a bal átló elemeinek szorzatából kivonjuk a jobb átló elemeinek szorzatát.
- -
Egy nem túl jó módszer a determináns kiszámolására.
- -
Egy túl jó módszer a determináns kiszámolására.
- -
Példák mikor nulla egy mátrix determinánsa. Két mátrix szorzatának determinánsa.
- -
Azokat a mátrixokat nevezzük szingulárisnak, amelyek determinánsa nulla.
- -
Azokat a mátrixokat nevezzük regulárisnak, amelyek determinánsa nem nulla.
- -
A Cramer szabály egy újabb módszer az egyenletrendszerek megoldására.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix diagonális alakját. Lássuk ez miért ilyen roppant fontos.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix spektrálfelbontását.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor a mátrix diagonizálható.
- -
Egy mátrix sarok főminor mátrixai a mátrix bal felső sarkától kezdődő sarok mátrixok determinánsai.
- -
Egy mátrix főminor mátrixai a mátrix bal felső sarkától kezdődő sarok mátrixok determinánsai.
- -
Egy nxn-es mátrix pozitív definit, ha minden sajátértéke pozitív.
- -
Egy nxn-es mátrix negatív definit, ha minden sajátértéke negatív.
- -
Egy nxn-es mátrix pozitív szemidefinit, ha minden sajátértéke nagyobb vagy egyenlő 0.
- -
Egy nxn-es mátrix negatív szemidefinit, ha minden sajátértéke kisebb vagy egyenlő 0.
- -
Egy nxn-es mátrix indefinit, ha van nullánál nagyobb és nullánál kisebb sajátértéke is..
- -
Éjszaka nem ajánlatos összefutni velük az utcán...
- -
A kvadratikus alakok mátrixa segít eldönteni a definitséget.
Lineáris egyenletrendszerek, mátrixok inverze
- -
Egy egyenletrendszer együtthatómátrixa az x-ek együtthatóiból álló mátrix.
- -
Az egyenletrendszer megoldásának egy szuper, de koránt sem a legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Ha egy egyenletrendszernek több az ismeretlene, mint ahány egyenlete van, akkor az egyenletrendszernek nincs egyértelmű megoldása.
- -
Ha egy egyenletrendszerben két olyan egyenlet szerepel, ahol az ismeretlenek együtthatói megegyeznek, de más az eredményük, akkor az ellentmondó egyenletrendszer, aminek nincs megoldása.
- -
A szabadságfok a szabadváltozók száma.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
Lineáris leképezések
- -
A lineáris leképezés egy test feletti vektorterek között ható művelettartó függvény.
- -
A képtér egy olyan altér $V_2$-ben, amely azokból a vektorokból áll, amiket a $V_1$-beli vektorokból csinál a leképezés.
- -
A magtér egy olyan altér $V_1$-ben, amelyek képe a leképezés során nullvektor.
- -
A képtér és a magtér dimenzióinak összege éppen $V_1$ dimenziója.
- -
Minden lineáris leképezést jellemezhetünk egy mátrixszal.
- -
Egy leképezésnek akkor létezik inverze, ha a leképezés mátrixának létezik inverze.
- -
Két leképezés kompozíciója a mátrixaik szorzata.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix diagonális alakját. Lássuk ez miért ilyen roppant fontos.
- -
Ha a mátrixnak létezik diagonális alakja, akkor van sajátbázisa, ami fantasztikus dolgokra képes.
- -
A lineáris leképezések másnéven homomorfizmusok. Ezek a homomorfizmusok és azok mátrixai maguk is egy vektorteret alkotnak, ezt a vektorteret $Hom(V_1, V_2)$-nek nevezzük.
- -
Az A és B mátrixok hasonlók, ha létezik egy C mátrix, amivel ha jobbról szorozzuk a B-t, balról pedig a C inverzével szorozzuk, akkor ennek eredménye A.
Oszthatóság
- -
Két számok legnagyobb közös osztója az a szám, amelyik mindkét számot osztja és ezek közül a legnagyobb.
- -
Két szám relatív prímek, ha a legnagyobb közös osztójuk 1.
- -
Néhány izgalmas oszthatósági szabály.
- -
A nullától és az egységszorzóktól különböző összes $n$ egész szám felbontható prímek szorzatára a sorrendtől és az egységszeresektől eltekintve egyértelműen.
- -
Egy $p$ szám akkor prím, ha $p$ oszt egy szorzatot, akkor csak az egyik szorzótényezőnek lehet osztója.
- -
Egy $q$ szám felbonthatatlan, ha nem létezik olyan egységtől különböző $a$ és $b$ szám, hogy $q=ab$
Euklideszi algoritmus & Diofantoszi egyenletek
- -
Az euklideszi algoritmus egy formányos módszer két szám legnagyobb közös osztójának kiszámolására.
- -
A Diofantoszi egyenletek olyan egész együtthatós kétismeretlenes egyenletek, amelyek megoldásait az egész számok halmazán keressük.
Kongruenciák
- -
Ha $a$ és $b$ ugyanazt a maradékot adja $m$-mel osztva, akkor azt mondjuk, hogy $a$ és $b$ kongruensek modulo $m$.
- -
A kongruencia reflexív, szimmetrikus és tranzitív.
- -
Két szám akkor kongruensek mod m, ha m osztja a két szám különbségét.
- -
Kongruenciák szorzása és osztása egy egész számmal.
- -
Egy adott $m$ modulus esetén az $a$-val kongruens elemek halmazát az $a$ által reprezentált maradékosztálynak nevezzük.
- -
Egy mod $m$ modulus esetén az $m$-hez relatív prím elemekből álló maradékosztályokat redukált maradékosztálynak nevezzük.
- -
Az euler féle $ \varphi$ függvény azt adja meg, hogy hány $m$-nél nem nagyobb, $m$-hez relatív prím pozitív szám létezik.
- -
A kis Fermat-tétel általánosítása.
- -
A kis Fermat-tétel szerint ha veszünk egy $a$ egész számot és azt $p$-edik hatványra emeljük, ahol $p$ prímszám, akkor ez a hatvány $p$-vel osztva $a$ maradékot ad.
- -
A lineáris kongruenciák olyan kongruenciák, amikben x is szerepel.
- -
Lineáris kongruenciák megoldásának lépései.
- -
Az RSA lényege, hogy a titkosítás kulcsa nyilvános, vagyis azt bárki ismerheti. Csak a dekódolás kulcsa az, ami titkos.