Barion Pixel SZTE GTK Matematika 2 | mateking
 
9 témakör, 105 rövid és szuper érthető epizód
Ezt a nagyon laza SZTE GTK Matematika 2 kurzust úgy terveztük meg, hogy egy csapásra megértsd a lényeget. Tudásszinttől függetlenül, teljesen az alapoktól magyarázzuk el a tananyagot, a saját ritmusodban lépésről lépésre. Így tudjuk a legbonyolultabb dolgokat is elképesztően egyszerűen elmagyarázni.
4 320 Ft fél évre

Tartalomjegyzék: 

A kurzus 9 szekcióból áll: Mátrixok és vektorok, Lineárisan független és összefüggő vektorok, vektorterek, Lineáris egyenletrendszerek, mátrixok inverze, Valszám alapok, kombinatorika, Teljes valószínűség tétele, Bayes tétel, Eloszlás, eloszlásfüggvény, sűrűségfüggvény, Várható érték és szórás, Markov és Csebisev egyenlőtlenségek, Nevezetes folytonos és diszkrét eloszlások

Mátrixok és vektorok

  • -

    mátrixok rendkívül barátságosak. Egy nXk-as mátrix tulajdonképpen nem más, mint egy táblázat, aminek n darab sora és k darab oszlopa van.

  • -

    Ha egy mátrixot osztunk egy számmal, akkor a mátrix minden elemét osztani kell a számmal.

  • -

    Ha egy mátrixot egy számmal szorzunk, akkor a mátrix összes elemét meg kell szorozni a számmal.

  • -

    Két mátrix kivonásakor kivonjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet kivonni egymásból, ha ugyanannyi soruk és oszlopuk van.

  • -

    Két mátrix összeadásakor összeadjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet összeadni, ha ugyanannyi soruk és oszlopuk van.

  • -

    Két mátrix szorzata akkor létezik, ha a bal oldali mátrix oszlopainak száma megegyezik a jobb oldali mátrix sorainak számával. Az eredménymátrix i-edik sorának j-edik elemét úgy kapjuk, hogy a bal oldali mátrix i-edik sorát skalárisan szorozzuk a jobb oldali mátrix j-edik oszlopával. (Tehát az első elemet az elsővel, a másodikat a másodikkal stb. szorozzuk, majd összeadjuk)

  • -

    A mátrix összeadás kommutatív és asszociatív.

  • -

    A mátrixszorzás nem kommutattív, de asszociatív.

  • -

    A diagonális mátrix olyan kvadratikus mátrix, aminek a főátlóján kívüli elemek nullák.

  • -

    Az egységmátrixok olyan diagonális mátrixok, aminek minden főátló-eleme egy.

  • -

    Az inverz mátrix egy olyan mátrix, hogy ha azzal szorozzuk az eredeti mátrixot, akkor egységmátrixot kapunk. Ha balról szorozva kapunk egységmátrixot, akkor bal inverz, ha jobbról szorozva, akkor jobb inverz mátrix.

  • -

    A kvadratikus mátrix négyzetes mátrix vagyis ugyanannyi sora van, mint oszlopa.

  • -

    Azokat a mátrixokat, melyek transzponáltjuk önmaga, szimmetrikus mátrixnak nevezzük.

  • -

    A transzponált a mátrix sorainak és oszlopainak felcserélése.

  • -

    Két vektor diadikus szorzata egy mátrix. Lássuk milyen.

  • -

    skaláris szorzat két vektor közti művelet, ami csinál belőlük egy számot.

  • -

    Vektort egy számmal úgy osztunk, hogy a vektor minden koordinátáját leosztjuk a számmal.

  • -

    Vektort egy számmal úgy szorzunk, hogy a vektor minden koordinátáját megszorozzuk a számmal.

  • -

    Két vektort úgy vonunk ki egymásból, hogy minden egyes koordinátájukat külön-külön kivonjuk egymásból.

  • -

    Két vektort úgy adunk össze, hogy minden egyes koordinátájukat külön-külön össze adjuk.

  • -

    Ha egy mátrixot megszorzunk balról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik sorát.

  • -

    Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak egy oszlopában lévő elemeit.

  • -

    Ha egy mátrixot megszorzunk jobbról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik oszlopát.

  • -

    Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak sorait.

Lineárisan független és összefüggő vektorok, vektorterek

  • -

    A vektorösszeadás kommutatív, asszociatív, létezik nullelem és létezik ellentett. A skalárszoros asszociatív, disztributív a vektorokra és a skalárokra is, és létezik egységszeres.

  • -

    Egy vektorrendszer akkor lineárisan független, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.

  • -

    Egy vektorrendszer akkor lineárisan összefüggő, ha a vektorok lineáris kombinációjaként a nullvektor úgy is elő tud állni, hogy nem minden szorzótényező 0.

  • -

    A bázis független generátorrendszer.

  • -

    Egy vektorrendszer akkor alkot független rendszert, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.

  • -

    Vektorok generátor-rendszert alkotnak, ha minden vektortérbeli vektor elő áll az ő lineáris kombinációjuként.

  • -

    Egy vektorrendszer rangja a benne lévő független vektorok maximális száma

  • -

    W altér V-ben, ha részhalmaza és maga is vektortér a V-beli műveletekre. Nos ez remek, de nézzük meg, mit is jelet mindez.

  • -

    Egy vektor akkor állítható egy vektorrendszerrel, ha előáll azon vektorok lineáris kombinációjaként.

Lineáris egyenletrendszerek, mátrixok inverze

Valszám alapok, kombinatorika

Teljes valószínűség tétele, Bayes tétel

Eloszlás, eloszlásfüggvény, sűrűségfüggvény

Várható érték és szórás

Markov és Csebisev egyenlőtlenségek

Nevezetes folytonos és diszkrét eloszlások