SZTE GTK Matematika 2
A kurzus 9 szekcióból áll: Mátrixok és vektorok, Lineárisan független és összefüggő vektorok, vektorterek, Lineáris egyenletrendszerek, mátrixok inverze, Valszám alapok, kombinatorika, Teljes valószínűség tétele, Bayes tétel, Eloszlás, eloszlásfüggvény, sűrűségfüggvény, Várható érték és szórás, Markov és Csebisev egyenlőtlenségek, Nevezetes folytonos és diszkrét eloszlások
Mátrixok és vektorok
- -
- -
Ha egy mátrixot osztunk egy számmal, akkor a mátrix minden elemét osztani kell a számmal.
- -
Ha egy mátrixot egy számmal szorzunk, akkor a mátrix összes elemét meg kell szorozni a számmal.
- -
Két mátrix kivonásakor kivonjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet kivonni egymásból, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix összeadásakor összeadjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet összeadni, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix szorzata akkor létezik, ha a bal oldali mátrix oszlopainak száma megegyezik a jobb oldali mátrix sorainak számával. Az eredménymátrix i-edik sorának j-edik elemét úgy kapjuk, hogy a bal oldali mátrix i-edik sorát skalárisan szorozzuk a jobb oldali mátrix j-edik oszlopával. (Tehát az első elemet az elsővel, a másodikat a másodikkal stb. szorozzuk, majd összeadjuk)
- -
A mátrix összeadás kommutatív és asszociatív.
- -
A mátrixszorzás nem kommutattív, de asszociatív.
- -
A diagonális mátrix olyan kvadratikus mátrix, aminek a főátlóján kívüli elemek nullák.
- -
Az egységmátrixok olyan diagonális mátrixok, aminek minden főátló-eleme egy.
- -
Az inverz mátrix egy olyan mátrix, hogy ha azzal szorozzuk az eredeti mátrixot, akkor egységmátrixot kapunk. Ha balról szorozva kapunk egységmátrixot, akkor bal inverz, ha jobbról szorozva, akkor jobb inverz mátrix.
- -
A kvadratikus mátrix négyzetes mátrix vagyis ugyanannyi sora van, mint oszlopa.
- -
Azokat a mátrixokat, melyek transzponáltjuk önmaga, szimmetrikus mátrixnak nevezzük.
- -
A transzponált a mátrix sorainak és oszlopainak felcserélése.
- -
Két vektor diadikus szorzata egy mátrix. Lássuk milyen.
- -
A skaláris szorzat két vektor közti művelet, ami csinál belőlük egy számot.
- -
Vektort egy számmal úgy osztunk, hogy a vektor minden koordinátáját leosztjuk a számmal.
- -
Vektort egy számmal úgy szorzunk, hogy a vektor minden koordinátáját megszorozzuk a számmal.
- -
Két vektort úgy vonunk ki egymásból, hogy minden egyes koordinátájukat külön-külön kivonjuk egymásból.
- -
Két vektort úgy adunk össze, hogy minden egyes koordinátájukat külön-külön össze adjuk.
- -
Ha egy mátrixot megszorzunk balról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik sorát.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak egy oszlopában lévő elemeit.
- -
Ha egy mátrixot megszorzunk jobbról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik oszlopát.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak sorait.
Lineárisan független és összefüggő vektorok, vektorterek
- -
A vektorösszeadás kommutatív, asszociatív, létezik nullelem és létezik ellentett. A skalárszoros asszociatív, disztributív a vektorokra és a skalárokra is, és létezik egységszeres.
- -
Egy vektorrendszer akkor lineárisan független, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.
- -
Egy vektorrendszer akkor lineárisan összefüggő, ha a vektorok lineáris kombinációjaként a nullvektor úgy is elő tud állni, hogy nem minden szorzótényező 0.
- -
A bázis független generátorrendszer.
- -
Egy vektorrendszer akkor alkot független rendszert, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.
- -
Vektorok generátor-rendszert alkotnak, ha minden vektortérbeli vektor elő áll az ő lineáris kombinációjuként.
- -
Egy vektorrendszer rangja a benne lévő független vektorok maximális száma
- -
W altér V-ben, ha részhalmaza és maga is vektortér a V-beli műveletekre. Nos ez remek, de nézzük meg, mit is jelet mindez.
- -
Egy vektor akkor állítható egy vektorrendszerrel, ha előáll azon vektorok lineáris kombinációjaként.
Lineáris egyenletrendszerek, mátrixok inverze
- -
Egy egyenletrendszer együtthatómátrixa az x-ek együtthatóiból álló mátrix.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Az egyenletrendszer megoldásának egy szuper, de koránt sem a legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Ha egy egyenletrendszernek több az ismeretlene, mint ahány egyenlete van, akkor az egyenletrendszernek nincs egyértelmű megoldása.
- -
Ha egy egyenletrendszerben két olyan egyenlet szerepel, ahol az ismeretlenek együtthatói megegyeznek, de más az eredményük, akkor az ellentmondó egyenletrendszer, aminek nincs megoldása.
- -
A szabadságfok a szabadváltozók száma.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
Valszám alapok, kombinatorika
- -
Eseményeknek nevezzük a valószínűségi kísérlet során bekövetkező lehetséges kimeneteleket.
- -
A valószínűség kiszámításának klasszikus modellje az, hogy megszámoljuk hány elemi eseményből áll a vizsgált esemény és ezt elosztjuk az összes elemi esemény számával.
- -
Mikor mondjuk, hogy két esemény egymástól független? Példák független eseményekre.
- -
Mikor kizáró két esemény? Példák kizáró eseményekre.
- -
A feltételes valószínűség. Az A feltéva B valószínűség azt jelenti, hogy mekkora eséllyel következik be az A esemény, ha a B esemény biztosan bekövetkezik..
- -
Események metszetének, uniójának, különbségének és komplementerének valószínűségei.
- -
Ha kör alakban helyezünk el n különböző elemet és azok sorrendjét vizsgáljuk, akkor ciklikus permutációról beszélünk.
Teljes valószínűség tétele, Bayes tétel
- -
- -
A teljes valószínűség tétele azt mondja ki, hogy ha ismerjük egy A esemény feltételes valószínűségét egy teljes eseményrendszer valamennyi eseményére, akkor ebből az A esemény valószínűsége kiszámítható.
Eloszlás, eloszlásfüggvény, sűrűségfüggvény
- -
Diszkrétnek nevezzük azokat a valószínűségi változókat, amik megszámlálhatóan sok értéket vesznek fel.
- -
Az X valószínűségi változó eloszlásfüggvénye F(x). F(x)=P(x<X) Vagyis minden x számhoz hozzárendeli annak a valószínűségét, hogy X<x. Nos ez elég izgi..
- -
Folytonosnak nevezzük azokat a valószínűségi változókat, amik folytonos mennyiségeket mérnek, ilyen például az idő, a távolság.
- -
A sűrűségfüggvény a görbe alatti területekkel írja le egy esemény valószínűségét.
- -
Az eloszlásfüggvény határértéke minusz végtelenben 0, plusz végtelenben 1, monoton nő és balról folytonos.
- -
Három nagyon fontos összefüggés eloszlásfüggvény és sűrűségfüggvény között.
- -
A sűrűségfüggvény integrálja minusz végtelentől plusz végtelenig 1, és nem negatív.
- -
Az $X$ valószínűségi változó $F(x)$ eloszlásfüggvényéből úgy kapjuk meg az $f(x)$ sűrűségfüggvényét, hogy az $F(x)$ eloszlásfüggvényt deriváljuk. Fordítva pedig integrálni kell.
Várható érték és szórás
- -
A szórás azt mutatja meg, hogy a várható érték körül milyen nagy ingadozásra számíthatunk.
- -
A valószínűségi változó értékeinek valószínűségekkel súlyozott átlaga. De valójában ez rém egyszerű, nézzünk rá néhány példát.
- -
Folytonos valószínűségi változó esetén a szórást ugyanúgy kell számolni, mint diszkrét valószínűségi változó esetén:
- -
Folytonos valószínűségi változók esetén a várható értéket egy integrálás segítségével számítjuk.
Markov és Csebisev egyenlőtlenségek
- -
A Markov egyenlőtlenség arról szól, hogy az X valószínűségi változó a várható értéknél nem lehet sokkal nagyobb.
- -
A Csebisev egyenlőtlenség azt írja le, hogy az X valószínűségi változó várható értéktől való eltérése nem lehet túl nagy.
- -
Ha egy esemény bekövetkezésének elméleti valószínűsége $p$, akkor minél többször végezzük el a kísérletet, a relatív gyakoriság és az elméleti valószínűség eltérése annál kisebb lesz.
Nevezetes folytonos és diszkrét eloszlások
- -
A binomiális eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a valószínűsége p és egymástól függetlenül elvégzünk n darab kísérletet, ahol a kísérletek mindegyikében az esemény vagy bekövetkezik vagy nem. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- -
Az eltelt idők és a távolságok eloszlása.
- -
A hipergeometriai eloszlás egy diszkrét eloszlás, ahol N darab elem közül kiválasztunk n darab elemet visszatevés nélkül. Az összes elem között K darab selejtes található. Az eloszlás annak valószínűségét írja le, hogy a kiválasztott elemek között éppen k darab selejtes van.
- -
A Poisson eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a várható előfordulása lambda darab. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- -
- -
Mennyiségek eloszlása.