Barion Pixel Analízis 1 IK | mateking
 
14 témakör, 329 rövid és szuper érthető epizód
Ezt a nagyon laza Analízis 1 IK kurzust úgy terveztük meg, hogy egy csapásra megértsd a lényeget. Tudásszinttől függetlenül, teljesen az alapoktól magyarázzuk el a tananyagot, a saját ritmusodban lépésről lépésre. Így tudjuk a legbonyolultabb dolgokat is elképesztően egyszerűen elmagyarázni.
4 980 Ft fél évre

Tartalomjegyzék: 

A kurzus 14 szekcióból áll: Halmazok, rendezett párok, leképezések, matematikai logika, Függvények, Összetett függvény és inverz függvény, Sorozatok határértéke, Küszöbindex és monotonitás, Rekurzív sorozatok, Sorok, Függvények határértéke és folytonossága, A határérték precíz definíciója, Deriválás, Differenciálhatóság vizsgálata és az érintő egyenlete, Taylor polinom és Taylor sor, Komplex számok, Polinomok

Halmazok, rendezett párok, leképezések, matematikai logika

  • -

    Az A és B halmazok uniója: Azon elemek halmaza, amelyek legalább az egyik halmazban benne vannak. Az A és B halmazok metszete: Azon elemek halmaza, amelyek mindkét halmazban benne vannak. Az A és B halmazok különbsége: Azon elemek halmaza, amelyek az A halmazba benne vannak, de a B halmazba nem. Az A halmaz komplementere a H alaphalmazon nézve: Az alaphalmaz azon elemeinek halmza, amelyek nincsenek benne az A-ban.

  • -

    A logikai szita formula a halmazok elemszámának meghatározását segítő képlet.

  • -

    Az első De Morgan azonosság azt mondja, hogy a metszet komplementere pont megegyezik a komplementrek uniójával. A második De Morgan azonosság pedig azt mondja, hogy az unió komplementere éppen megegyezik a komplementerek metszetével.

  • -

    Egy halmaz összes részhalmazainak halmazát hatványhalmaznak nevezzük.

  • -

    Két halmaz szimmetrikus differenciája a halmazok kétféle különbségének uniója.

  • -

    A függvény értékkészlete azoknak az elemeknek a halmaza a B halmazban, amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.

  • -

    Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.

  • -

    Az univerzális kvantor egy jelölése a "minden" kifejezésnek.

  • -

    Az egzisztenciális kvantor egy jelölése a "létezik" vagy "van olyan" kifejezésnek.

  • -

    Egy $A$ kijelentés negációja az a kijelentés, amely akkor igaz, ha $A$ hamis és akkor hamis, ha $A$ igaz.

  • -

    Az állítás (vagy kijelentés) olyan kijelentő mondat, amelyről egyértelműen eldönthetjük, hogy az igaz vagy hamis.

  • -

    Két kijelentés konjunkciója pontosan akkor igaz, ha mindkét kijelentés igaz, különben hamis.

  • -

    Két kijelentés diszjunkciója pontosan akkor igaz, ha legalább az egyik kijelentés igaz, különben hamis.

  • -

    Az implikáció akkor hamis, ha $A$ igaz és $B$ hamis, minden más esetben igaz.

  • -

    Az ekvivalencia akkor igaz, ha $A$ és $B$ logikai értéke azonos, különben hamis.

  • -

    De Morgan azonosságok a konjunkció, diszjunkció, implikáció és ekvivalencia tagadásaira.

  • -

    A diszjunktív normálforma, röviden DNF egy olyan alakja egy logikai formuláknak, ahol a művelet a változóinak vagy negáltjainak konjunkcióinak diszjunkciója.

Függvények

  • -

    A függvény értékkészlete azoknak az elemeknek a halmaza a B halmazban, amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.

  • -

    Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.

  • -

    A függvény monotonitása lehet növekedő, csökkenő, szigorúan monton növekedő vagy szigorúan monoton csökkenő.

  • -

    Globális és lokális maximumok és minimumok.

  • -

    A függvény konvexitása megmondja, hogy a függvény szomorú vagy vidám hangulatban van.

  • -

    Megnézzük, hogy melyik függvény hogyan néz ki, aztán megnézzük a külső és belső függvénytranszformációkat. Eltolás az x tengely mentén, eltolás az y tengely mentén, tükrözés, nyújtás.

  • -

    Mikor páros, mikor páratlan vagy éppen egyik sem egy függvény.

  • -

    Lássuk mik azok a polinomfüggvények, és hogyan kell őket ábrázolni.

Összetett függvény és inverz függvény

  • -

    Ha két függvényt egymásba ágyazunk, összetett függvényt kapunk.

  • -

    A függvény hozzárendelésének megfordításával kapjuk a függvény inverzfüggvényét, amennyiben a megfordított hozzárendelés is egy egyértelmű hozzárendelés.

Sorozatok határértéke

Küszöbindex és monotonitás

  • -

    sorozatok egyik legfontosabb tulajdonsága a határértékük, ami azt jelenti, hogy mi történik a sorozattal ahogy egyre és egyre nagyobb indexű tagjait vizsgáljuk.

  • -

    Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük.

  • -

    Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük.

  • -

    A sorozat monotonitása lehet monton nő, monoton csökkenő, szigorúan monoton nő, szigorúan monoton csökkenő.

Sorok

Függvények határértéke és folytonossága

A határérték precíz definíciója

Deriválás

  • -

    Egy szelő egyenes meredeksége a differenciahányados.

  • -

    A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.

  • -

    Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.

  • -

    Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.

  • -

    A lánc-szabály az összetett függvények deriválási szabálya.

  • -

    A sinh és cosh hiperbolikus függvények közt fennálló azonosságok.

  • -

    A cosh, sinh és tanh függvények deriváltjai.

  • -

    A cosh, sinh és tanh függvények inverzfüggvényei.

  • -

    Az arcosh, arsinh és artanh függvények deriváltjai.

Differenciálhatóság vizsgálata és az érintő egyenlete

  • -

    Egy szelő egyenes meredeksége a differenciahányados.

  • -

    A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.

  • -

    A függvény érintője egy olyan egyenes, amely egy függvényt pontosan egy pontban érint.

Taylor polinom és Taylor sor

  • -

    Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...

  • -

    Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...

  • -

    Az $e^x$, lnx, sinx és cosx függvények Taylor sorai.

  • -

    Amikor egy függvény x helyen lévő értékét szeretnénk közelíteni egy Taylor polinommal, akkor lesz egy kis hibánk, mivel a polinom nem teljesen követi a függvényt. Ennek a hibának a kifejezésére van a Lagrange-féle maradéktag. 

Komplex számok