Analízis 1 IK
A kurzus 14 szekcióból áll: Halmazok, rendezett párok, leképezések, matematikai logika, Függvények, Összetett függvény és inverz függvény, Sorozatok határértéke, Küszöbindex és monotonitás, Rekurzív sorozatok, Sorok, Függvények határértéke és folytonossága, A határérték precíz definíciója, Deriválás, Differenciálhatóság vizsgálata és az érintő egyenlete, Taylor polinom és Taylor sor, Komplex számok, Polinomok
Halmazok, rendezett párok, leképezések, matematikai logika
- -
Az A és B halmazok uniója: Azon elemek halmaza, amelyek legalább az egyik halmazban benne vannak. Az A és B halmazok metszete: Azon elemek halmaza, amelyek mindkét halmazban benne vannak. Az A és B halmazok különbsége: Azon elemek halmaza, amelyek az A halmazba benne vannak, de a B halmazba nem. Az A halmaz komplementere a H alaphalmazon nézve: Az alaphalmaz azon elemeinek halmza, amelyek nincsenek benne az A-ban.
- -
A logikai szita formula a halmazok elemszámának meghatározását segítő képlet.
- -
Az első De Morgan azonosság azt mondja, hogy a metszet komplementere pont megegyezik a komplementrek uniójával. A második De Morgan azonosság pedig azt mondja, hogy az unió komplementere éppen megegyezik a komplementerek metszetével.
- -
Egy halmaz összes részhalmazainak halmazát hatványhalmaznak nevezzük.
- -
Két halmaz szimmetrikus differenciája a halmazok kétféle különbségének uniója.
- -
A függvény értékkészlete azoknak az elemeknek a halmaza a B halmazban, amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.
- -
Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.
- -
Az univerzális kvantor egy jelölése a "minden" kifejezésnek.
- -
Az egzisztenciális kvantor egy jelölése a "létezik" vagy "van olyan" kifejezésnek.
- -
Egy $A$ kijelentés negációja az a kijelentés, amely akkor igaz, ha $A$ hamis és akkor hamis, ha $A$ igaz.
- -
Az állítás (vagy kijelentés) olyan kijelentő mondat, amelyről egyértelműen eldönthetjük, hogy az igaz vagy hamis.
- -
Két kijelentés konjunkciója pontosan akkor igaz, ha mindkét kijelentés igaz, különben hamis.
- -
Két kijelentés diszjunkciója pontosan akkor igaz, ha legalább az egyik kijelentés igaz, különben hamis.
- -
Az implikáció akkor hamis, ha $A$ igaz és $B$ hamis, minden más esetben igaz.
- -
Az ekvivalencia akkor igaz, ha $A$ és $B$ logikai értéke azonos, különben hamis.
- -
De Morgan azonosságok a konjunkció, diszjunkció, implikáció és ekvivalencia tagadásaira.
- -
A diszjunktív normálforma, röviden DNF egy olyan alakja egy logikai formuláknak, ahol a művelet a változóinak vagy negáltjainak konjunkcióinak diszjunkciója.
Függvények
- -
A függvény értékkészlete azoknak az elemeknek a halmaza a B halmazban, amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.
- -
Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.
- -
A függvény monotonitása lehet növekedő, csökkenő, szigorúan monton növekedő vagy szigorúan monoton csökkenő.
- -
Globális és lokális maximumok és minimumok.
- -
A függvény konvexitása megmondja, hogy a függvény szomorú vagy vidám hangulatban van.
- -
Megnézzük, hogy melyik függvény hogyan néz ki, aztán megnézzük a külső és belső függvénytranszformációkat. Eltolás az x tengely mentén, eltolás az y tengely mentén, tükrözés, nyújtás.
- -
Mikor páros, mikor páratlan vagy éppen egyik sem egy függvény.
- -
Lássuk mik azok a polinomfüggvények, és hogyan kell őket ábrázolni.
Összetett függvény és inverz függvény
- -
Ha két függvényt egymásba ágyazunk, összetett függvényt kapunk.
- -
A függvény hozzárendelésének megfordításával kapjuk a függvény inverzfüggvényét, amennyiben a megfordított hozzárendelés is egy egyértelmű hozzárendelés.
Sorozatok határértéke
- -
Nevezetes 0-hoz tartó sorozatok.
- -
Nevezetes végtelenhez tartó sorozatok.
- -
Nevezetes gyökös sorozatok határértéke.
- -
Exponenciális kifejezések határértéke.
- -
Egy nevezetes sorozatcsalád, az e-hez tartó sorozatok.
- -
Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük. Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük. Az ugráló sorozatokat oszcillálónak nevezzük. Lássunk néhány példát.
- -
Ha két rendőr közrefog egy honpolgárt és a két rendőr konvergál a rendőrőrsre, akkor az általuk közrefogott honpolgárnak is szükségképpen konvergálnia kell a rendőrőrsre..
- -
- -
A végtelenbe tartó sorozatok nagyságrendi sorrendje azt mondja meg, hogy melyik sorozat milyen ütemben tart a végtelenbe. Minél nagyobb nagyságrendű egy sorozat, annál gyorsabban tart a végtelenbe
- -
Egy sorozatnak torlódási pontja az A szám, ha bármilyen kis környezetében a sorozatnak végtelen sok tagja van.
- -
Egy sorozat limesz inferiorja a torlódási pontjainak infinuma. A limesz szuperiorja a torlódási pontjainak szuprémuma.
Küszöbindex és monotonitás
- -
A sorozatok egyik legfontosabb tulajdonsága a határértékük, ami azt jelenti, hogy mi történik a sorozattal ahogy egyre és egyre nagyobb indexű tagjait vizsgáljuk.
- -
Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük.
- -
Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük.
- -
A sorozat monotonitása lehet monton nő, monoton csökkenő, szigorúan monoton nő, szigorúan monoton csökkenő.
Sorok
- -
A mértani sor képlete, példák mértani sorokra.
- -
Egy végtelen sor akkor konvergens, ha részletösszegsorozata konvergens.
- -
Ha egy sorozat határértéke nem 0, akkor a belőle képzett sor divergens.
- -
Speciális sorok.
- -
Egy másik fontos konvergenciakritérium, ami az n-edik tag n-edik gyökének segítségével dönti el a konvergenciát.
- -
Egy fontos konvergenciakritérium, amely az n+1-edik tag és az n-edik tag hányadosával dönti el a konvergenciát.
- -
Speciális sorok.
- -
A sorok konvergenciájának megállapítására vonatkozó képletek.
- -
Tört hatványának sorának konvergenciája a hatványkitevőtől függően.
- -
Olyan sorok, amelyek valójában az első és az utolsó tagon kívül semmilyen más tagot nem tartalmaznak.
- -
Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük, ahol $r$ a konvergenciasugár.
- -
A hatványsorok konvergenciájának vizsgálata.
Függvények határértéke és folytonossága
- -
Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.
- -
Függvények szakadása négy féle lehet: megszüntethető szakadás, ugrás, nem megszüntethető, nem véges szakadás, nem megszüntethető oszcilláló szakadás.
- -
Beszéljünk egy kicsit a trigonometrikus függvények határértékéről. Néhány nevezetes határérték, élükön a sinx/x típusúval.
A határérték precíz definíciója
- -
Lássuk mi is az a függvényhatárérték!
- -
Lássuk mi is az a függvényhatárérték!
Deriválás
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.
- -
Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.
- -
A lánc-szabály az összetett függvények deriválási szabálya.
- -
A sinh és cosh hiperbolikus függvények közt fennálló azonosságok.
- -
A cosh, sinh és tanh függvények deriváltjai.
- -
A cosh, sinh és tanh függvények inverzfüggvényei.
- -
Az arcosh, arsinh és artanh függvények deriváltjai.
Differenciálhatóság vizsgálata és az érintő egyenlete
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
A függvény érintője egy olyan egyenes, amely egy függvényt pontosan egy pontban érint.
Taylor polinom és Taylor sor
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Az $e^x$, lnx, sinx és cosx függvények Taylor sorai.
- -
Amikor egy függvény x helyen lévő értékét szeretnénk közelíteni egy Taylor polinommal, akkor lesz egy kis hibánk, mivel a polinom nem teljesen követi a függvényt. Ennek a hibának a kifejezésére van a Lagrange-féle maradéktag.
Komplex számok
- -
Komplex számok összeadásakor összeadjuk a valós részeket és külön összeadjuk a képzetes részeket. Kivonáskor külön kivonjuk egymásból a valós részeket és a képzetes részeket.
- -
Egy képlet az a+bi alakú komplex számok szorzásához.
- -
A komplex számok egy valós és egy imaginárius (képzetes) számból épülnek föl. A valós számok a szokásos x tengelyen helyezkednek el, míg az imaginárius számok egy erre merőleges y tengelyen, amit imaginárius tegelynek, vagy képzetes tengelynek nevezünk.
- -
Olyan számok, amelyek valós és képzetes részből épülnek fel.
- -
A valós számokat úgy érdemes elképzelni, mint egy koordinátarendszer x tengelyét. És minden helyet ki is töltenek a valós számok ezen a számegyenesen. A komplex számok egy valós és egy imaginárius (képzetes) részből épülnek föl, és szemléltetésükhöz nem egy, hanem két koordinátatengelyre van szükség. Az x tengelyen vannak a valós számok, az y tengelyen pedig az imaginárius, vagyis a képzetes számok. A valós számok tengelyén az egység a szokásos 1, míg az imaginárius számok tengelyén az egység az i. A kétb tengely által kifeszített síkot nevezzük komplex számsíknak, vagy másknt Gauss-féle számsíknak.
- -
A komplex szám tükörképe az x tengelyre.
- -
Egy komplex szám abszolútértéke az origotól mért távolsága.
- -
A komplex számok osztását, szorzását és hatványozását megkönnyítő forma.
- -
Képlet komplex számok szorzásához és osztásához, ha azok trigonometrikus alakban vannak megadva.
- -
Egy képlet komplex számok hatványozásához, ha a komplex szám trigonometrikus alakban van.
- -
Egy képlet komplex számok gyökvonásához, ha a komplex szám trigonometrikus alakban van.
- -
Képlet komplex számok szorzásához és összeadásához, ha a komplex számok exponenciális alakban vannak megadva.
- -
Egy képlet komplex számok hatványozásához, ha a komplex szám exponenciális alakban van.
- -
Egy képlet komplex számok gyökvonásához, ha a komplex szám exponenciális alakban van.