Matek 2 DE
A kurzus 9 szekcióból áll: Kétváltozós függvények, Kétváltozós határérték és totális differenciálhatóság, Kettős és hármas intergrál, térfogati integrál, Paraméteres görbék, Vektormezők, görbementi és felületi integrálok, Divergencia és rotáció, Differenciálegyenletek, Izoklinák, Síkbeli és térbeli leképezések és mátrixaik
Kétváltozós függvények
- -
A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot.
- -
A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
- -
A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
- -
Egy általános módszer, amivel kétváltozós függvények szélsőértékeit és nyeregpontjait lehet meghatározni
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.
- -
A sík azon pontjainak összességét, amelyekben az $f$ függvény ugyanazt a konstans értéket veszi fel, az $f$ függvény szintvonalának nevezzük.
- -
Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.
- -
A parciális deriváltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
- -
Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.
- -
Egy függvény akkor implicit, ha $y$ nincs kifejezve, vagyis nem $y=\dots$ alakú.
- -
Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.
Kétváltozós határérték és totális differenciálhatóság
- -
Az egyváltozós függvények határértékének epszilon-deltás definícióját átültetjük a kétváltozós esetre.
- -
Hogyan vihető át a deriválás szemléletes jelentése egyváltozós függvényekről kétváltozós függvényekre?
- -
A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
Kettős és hármas intergrál, térfogati integrál
- -
A kétváltozós függvények határozott integrálja egy test térfogata.
- -
A kettősintegrálok segítségével különböző felületek alatti térfogatokat tudunk kiszámolni. A legegyszerűbb eset, amikor egy téglalapon integrálunk. Ilyenkor az integrálás határai valamilyen számok.
- -
Bizonyos kettősintegrálok kiszámolását megkönnyíti, ha inkább polárkoordinátákat használunk.
- -
A síkbeli polárkoordináták egyik térbeli kiterjesztése - de nem az igazi...
- -
A polárkoordináták háromdimenziós változatát gömbi koordinátáknak nevezzük. A régi x, y, z koordinátákat új gömbi koordinátákkal helyettesítjük.
Paraméteres görbék
- -
A ciklois egy olyan görbe, amelyet egy irányított görbén csúszás nélkül legördülő kör egy meghatározott pontja ír le.
- -
A paraméteres görbe egyenlete a görbén mozgó pont pillanatnyi koordinátáit írja le. A paraméteres görbe deriválásával kapjuk a $v(t)$ sebességvektort, ami minden időpillanatban megadja a görbén mozgó $P$ pont sebességének irányát és nagyságát.
- -
A görbe ívhossza egy differencálható görbe szakaszának a hossza.
- -
Az $r(t)$ paraméteres görbe első deriváltja a görbe érintővektora vagy más néven sebességvektora.
- -
Az $r(t)$ paraméteres görbe második deriváltja a görbe gyorsulásvektora. Ha ezt elosztjuk a saját hosszával, az így keletkező egységnyi hosszú vektor a görbe főnormálisvektora.
- -
Binormálisvektornak nevezzük a görbe sebességvektorával és gyorsulásvektorával alkotott szorzatot.
- -
A $\underline{T}(t)$, $\underline{N}(t)$ és $\underline{B}(t)$ vektorok együttes elnevezése kísérő triéder.
- -
Az $r(t)$ paraméteres görbe második deriváltja a gyorsulást írja le. Ezek a vektorok egy síkot feszítenek ki, ezt a síkot a görbe simulósíkjának nevezzük.
- -
A görbület azt írja le, hogy a simulósíkon belül milyen erősen kanyarodik a görbe. A térgörbék azonban nem csak a simulósíkon belül kanyarodnak, hanem közben ki is csavarodnak abból. Azt, hogy egy térgörbe éppen milyen ütemben csavarodik ki a simulósíkjából, a torzió írja le.
- -
A paraméteres görbe görbülete a görbe egyenestől való eltérését jellemző számérték.
- -
Hogyha a görbének egy $P$ pontjában létezik nem nulla görbülete, akkor azt a kört, amel a $P$-ben érinti a görbét és a görbülete megegyezik a görbe $P$-beli görbületével és a középpontja a görbe konkáv részében található, a görbe $P$ pontbeli simulókörének nevezzük.
- -
A simulókörök középpontjai által kirajzolt alakzatot evolutának hívjuk.
- -
Az ellipszis egy olyan görbe, amely azon pontok mértani helye egy síkon, ahol a pontok két rögzített ponttól mért távolságának összege a két pont távolságánál nagyobb állandó.
- -
A hiperbola azon pontok halmaza, melyeknek két rögzített ponttól való távolságának különbségének abszolút értéke állandó.
Vektormezők, görbementi és felületi integrálok
- -
A vektormező egy olyan függvény, ami egy tér pontjaihoz vektort rendel.
- -
A $v(x,y)$ vektormezőnek az $r(t)= ( x(t), y(t) )$ görbe mentén vett integrálja $t_1$ és $t_2$ között.
- -
A fluxus azt mondja meg, hogy egy adott felületen mekkora az átáramló anyag vagy energia.
- -
A $v(x,y,z)$ vektormezőnek az $S(t,u)=\left( x(t,u), y(t,u), z(t,u) \right)$ felületi integrálja.
- -
A $v(x,y,z)$ vektormezőnek az $r(t)= ( x(t), y(t), z(t) )$ görbe mentén vett integrálja.
Divergencia és rotáció
- -
A vektormező divergenciája egy olyan függvény, amely a vektormező minden pontjában megméri, hogy ott mennyi anyag áramlik a rendszerbe vagy épp mennyi tűnik el.
- -
A rotáció a vektormező örvénylését írja le.
- -
Egy vektormező akkor forrásmentes, ha nincs benne forrás, vagyis nincs benne olyan pont, amelynek pozitív a divergenciája.
- -
Egy vektormező akkor örvénymentes, ha a vektormező rotációja mindenütt nulla.
- -
A konzervatív vektormezőre több különböző definíció van forgalomban attól függően, hogy fizikusok vagy matematikusok alkották-e meg magát a definíciót.
- -
A vektormező akkor konzervatív, ha létezik $F$ primitív függvénye. Ez az $F$ függvény a vektormező potenciál-függvénye.
- -
Az első Green-tétel azt írja le a rotáció segítségével, hogy mekkora egy vektormező örvénylése a zárt görbén. A második Green-tétel pedig azt írja le a divergencia segítségével, hogy mekkora egy vektormező fluxusa a zárt görbén.
- -
A második Green-tétel térbeli változata azt mondja, hogy egy vektormező integrálja az $S$ kifelé irányított zárt felületen egyenlő a divergencia integráljával a felület által határolt $D$ tartományon.
- -
Az első Green-tétel térbeli változatát Stokes-tételnek nevezzük.
Differenciálegyenletek
- -
A differenciálegyenletek olyan egyenletek, amiben az ismeretlenek függvények. Az egyenletben ezeknek a függvényeknek a különböző deriváltjai és hatványai szerepelnek.
- -
Azt mondja meg, hogy az ismeretlen függvény maximum hanyadik deriváltja szerepel az egyenletben.
- -
Ha az ismeretlen függvény és deriváltjai csak első fokon szerepelnek a differenciálegyenletben, akkor az egyenlet lineáris.
- -
Olyan differenciálegyenlet, amelyet az egyenlet szétválasztásával és a két rész külön-külön integrálásával lehet megoldani
- -
Egy differenciálegyenlet homogén fokszámú, ha $y=ux$ helyettesítés után minden $x$-es tag kitevője megegyezik.
- -
A differenciálegyenletek második fő típusa, sok helyen nincs benne a tananyagban.
- -
annak olyan egyenletek, amelyek ugyan nem egzaktak, de egy ügyes trükk segítségével egzakttá tehetők. Itt jön a trükk...
- -
Az egyik legfontosabb típus az y'+Py=Q alakú differenciálegyenlet, amelyre egy részletes megoldási tervet adunk.
- -
A konstans variálás módszere egy megoldási módszer az elsőrendű lineáris differenciálegyenletekhez.
- -
Az elsőrendű lineáris állandó együtthatós differenciálegyenlet egy speciális esete a lineáris elsőrendű egyenleteknek. Azért hívják állandó együtthatósnak, mert a $P(x)$ függvény ilyenkor valamilyen konstans, mondjuk $a$.
- -
Ez olyankor van, ha a homogén megoldás és a partikuláris megoldás hasonlít egymásra. Lássuk mit is jelent ez...
- -
A másodrendű lineáris állandó együtthatós homogén differenciálegyenlet általános alakja: $ay'' + by' + cy = 0 $. Megoldásához a karakterisztikus egyenletet használjuk.
- -
A másodrendű lineáris állandó együtthatós inhomogén differenciálegyenlet általános alakja: $ay'' + by' + cy = Q(x) $. A homogén megoldást megkapjuk a karakterisztikus egyenlet segítségével, a partikuláris megoldást pedig a próbafüggvény módszerrel végezzük.
Izoklinák
- -
Azon pontok halmazát, melyekben a megoldásfüggvények meredeksége egy adott számmal egyenlő, a differenciálegyenlet izoklinájának nevezzük.
Síkbeli és térbeli leképezések és mátrixaik
- -
A lineáris leképezés egy test feletti vektorterek között ható művelettartó függvény.
- -
A képtér egy olyan altér $V_2$-ben, amely azokból a vektorokból áll, amiket a $V_1$-beli vektorokból csinál a leképezés.
- -
A magtér egy olyan altér $V_1$-ben, amelyek képe a leképezés során nullvektor.
- -
A képtér és a magtér dimenzióinak összege éppen $V_1$ dimenziója.
- -
Minden lineáris leképezést jellemezhetünk egy mátrixszal.
- -
Egy leképezésnek akkor létezik inverze, ha a leképezés mátrixának létezik inverze.
- -
Két leképezés kompozíciója a mátrixaik szorzata.
- -
Az x tengelyre, az y tengelyre, és az y=x egyenletű egyenesre való tükrözések mátrixai.
- -
Az alfa szögű forgatás mátrixa.
- -
Az origóra való középpontos tükrözés mátrixa egy 180°-os fogatásnak felel meg.
- -
Az $i$ és $j$ koordinátatengelyek síkjában történő Givens forgatás mátrixát úgy kapjuk, hogy arra a négy helyre ahol az egységmátrix $i$-edik és $j$-edik sora és oszlopa metszi egymást beírjuk szépen az $\alpha$ szögű forgatás mátrixának elemeit.
- -
Az origón átmenő síkokra való tükrözést Householder-tükrözésnek nevezzük.
- -
A Householder tükrözés mátrixa.
- -
Az x és az y tengelyre való merőleges vetítés mátrixai.
- -
Az x és az y tengelyre való merőleges vetítés mátrixai.
- -
A $\underline{v}$ irányvektorú origón átmenő egyenesre történő merőleges vetítés mátrixa.
- -
Az $\underline{a}$ normálvektorú origón átmenő egyenesre, síkra, vagy hipersíkra vetítés mátrixa.