Az $f: \; x\mapsto y$ függvény kölcsönösen egyértelmű, ha $x_1 \neq x_2$ akkor $y_1 \neq y_2$. Vagyis különböző $x$-ekhez mindig különböző $y$-okat rendel.
Olyan hozzárendelés, ami különböző x-ekhez különböző y-okat rendel.
Adott a következő függvény.
\( f(x)=x^2-4 \quad D_f : -2 \leq x \leq 4 \)
a) Milyen számot rendel hozzá ez a függvény a 3-hoz?
b) Melyik az a szám, amihez a függvény a 12-t rendeli hozzá?
c) Mik a függvény zérushelyei?