RSA kódolás | mateking
 

RSA kódolás

Az RSA lényege, hogy a titkosítás kulcsa nyilvános, vagyis azt bárki ismerheti. Csak a dekódolás kulcsa az, ami titkos.

Az alapötlete a következő:

Veszünk két jó nagy prímet, $p$-t és $q$-t amit csak mi ismerünk, ezek titkosak.

Elkészítjük az $N=p \cdot q$ számot és $\varphi(N)$-et, amit csak mi ismerünk.

Ha $p$ és $q$ többszázjegyű prímek, akkor $N$ prímfelbontása a jelenlegi számítógépekkel több ezer évig tartana, és így $\varphi(N)$ kiszámolása is lehetetlen.

Végül már csak egy dolog kell, egy $e$ kitevő, amire teljesül, hogy $ \left( e, \varphi(N) \right) = 1 $

Ezt követően jön a titkosítás.

A visszafejtéshez pedig az Euler-Fermat tétel kell, aminek segítségével megalkotjuk a $d$ megfejtő kulcsot.