Matek 3 DE
A kurzus 16 szekcióból áll: Valszám alapok, Kombinatorika, Teljes valószínűség tétele, Bayes tétel, Eloszlás, eloszlásfüggvény, sűrűségfüggvény, Várható érték és szórás, Nevezetes diszkrét és folytonos eloszlások, Markov és Csebisev egyenlőtlenségek, Kétváltozós eloszlások, Becslések, Hipotézisvizsgálat, Interpolációs polinomok, Sorok & hatványsorok & Taylor-sorok, Differenciálegyenletek, Differenciálegyenletek, izoklinák, Fourier sorok, Laplace transzformáció, Geometriai valószínűség, Binomiális tétel
Valszám alapok, Kombinatorika
- -
Eseményeknek nevezzük a valószínűségi kísérlet során bekövetkező lehetséges kimeneteleket.
- -
A valószínűség kiszámításának klasszikus modellje az, hogy megszámoljuk hány elemi eseményből áll a vizsgált esemény és ezt elosztjuk az összes elemi esemény számával.
- -
Mikor mondjuk, hogy két esemény egymástól független? Példák független eseményekre.
- -
Mikor kizáró két esemény? Példák kizáró eseményekre.
- -
A feltételes valószínűség. Az A feltéva B valószínűség azt jelenti, hogy mekkora eséllyel következik be az A esemény, ha a B esemény biztosan bekövetkezik..
- -
Események metszetének, uniójának, különbségének és komplementerének valószínűségei.
Teljes valószínűség tétele, Bayes tétel
- -
A teljes valószínűség tétele azt mondja ki, hogy ha ismerjük egy A esemény feltételes valószínűségét egy teljes eseményrendszer valamennyi eseményére, akkor ebből az A esemény valószínűsége kiszámítható.
- -
Eloszlás, eloszlásfüggvény, sűrűségfüggvény
- -
Folytonosnak nevezzük azokat a valószínűségi változókat, amik folytonos mennyiségeket mérnek, ilyen például az idő, a távolság.
- -
Diszkrétnek nevezzük azokat a valószínűségi változókat, amik megszámlálhatóan sok értéket vesznek fel.
- -
Az X valószínűségi változó eloszlásfüggvénye F(x). F(x)=P(x<X) Vagyis minden x számhoz hozzárendeli annak a valószínűségét, hogy X<x. Nos ez elég izgi..
- -
A sűrűségfüggvény a görbe alatti területekkel írja le egy esemény valószínűségét.
- -
Az eloszlásfüggvény határértéke minusz végtelenben 0, plusz végtelenben 1, monoton nő és balról folytonos.
- -
A sűrűségfüggvény integrálja minusz végtelentől plusz végtelenig 1, és nem negatív.
- -
Három nagyon fontos összefüggés eloszlásfüggvény és sűrűségfüggvény között.
- -
Az $X$ valószínűségi változó $F(x)$ eloszlásfüggvényéből úgy kapjuk meg az $f(x)$ sűrűségfüggvényét, hogy az $F(x)$ eloszlásfüggvényt deriváljuk. Fordítva pedig integrálni kell.
Várható érték és szórás
- -
A valószínűségi változó értékeinek valószínűségekkel súlyozott átlaga. De valójában ez rém egyszerű, nézzünk rá néhány példát.
- -
A szórás azt mutatja meg, hogy a várható érték körül milyen nagy ingadozásra számíthatunk.
- -
Folytonos valószínűségi változók esetén a várható értéket egy integrálás segítségével számítjuk.
- -
Folytonos valószínűségi változó esetén a szórást ugyanúgy kell számolni, mint diszkrét valószínűségi változó esetén:
Nevezetes diszkrét és folytonos eloszlások
- -
A hipergeometriai eloszlás egy diszkrét eloszlás, ahol N darab elem közül kiválasztunk n darab elemet visszatevés nélkül. Az összes elem között K darab selejtes található. Az eloszlás annak valószínűségét írja le, hogy a kiválasztott elemek között éppen k darab selejtes van.
- -
A binomiális eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a valószínűsége p és egymástól függetlenül elvégzünk n darab kísérletet, ahol a kísérletek mindegyikében az esemény vagy bekövetkezik vagy nem. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- -
A Poisson eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a várható előfordulása lambda darab. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- -
Az eltelt idők és a távolságok eloszlása.
- -
- -
Mennyiségek eloszlása.
Markov és Csebisev egyenlőtlenségek
- -
A Markov egyenlőtlenség arról szól, hogy az X valószínűségi változó a várható értéknél nem lehet sokkal nagyobb.
- -
A Csebisev egyenlőtlenség azt írja le, hogy az X valószínűségi változó várható értéktől való eltérése nem lehet túl nagy.
- -
Ha egy esemény bekövetkezésének elméleti valószínűsége $p$, akkor minél többször végezzük el a kísérletet, a relatív gyakoriság és az elméleti valószínűség eltérése annál kisebb lesz.
Kétváltozós eloszlások
- -
$X$ és $Y$ együttes eloszlása egy táblázat, amelyben szerepel $X$ és $Y$ összes lehetséges értéke és a hozzájuk tartozó valószínűségek.
- -
A korreláció $X$ és $Y$ valószínűségi változók közötti kapcsolatot írja le.
- -
Két valószínűségi változó peremeloszlás-függvényeinek felírása.
- -
Két valószínűségi változó együttes eloszlásfüggvényeinek felírása.
- -
Két valószínűségi változó együttes sűrűségfüggvény nagyon vicces módon írja le a valószínűségeket a függvény felülete alatti térfogat segítségével, vagyis jó sokat kell integrálgatni.
- -
Két valószínűségi változó együttes sűrűségfüggvényéből ki tudjuk számolni az X és az Y valószínűségi változó saját sűrűségfüggvényét. Ezeket hívjuk perem-sűrűségfüggvényeknek.
- -
Két valószínűségi változó peremeloszlás-függvényeinek felírása.
Becslések
- -
Olyan esetekben, amikor valamiért nem tudjuk vagy nem akarjuk a teljes sokaságot megvizsgálni, hogy meghatározzuk a fontosabb statisztikai mutatóit, becslést alkalmazunk.
- -
A megbízhatósági szintet konfidencia szintnek nevezzük.
- -
Az $1- \alpha$ megbízhatósági szinthez, vagy másként konfidencia szinthez tartozó konfidencia intervallumok azok az intervallumok, amik a sokasági átlagot $1-\alpha$ valószínűséggel tartalmazzák.
- -
Módszer az átlag intervallumbecslésére, ha a sokasági szórás ismert.
- -
A FAE minta azt jelenti, hogy a mintavétel során bármely mintaelemet azonos eséllyel választunk ki.
- -
Módszer átlag intervallumbecslésére, ha a sokasági szórás nem ismert.
- -
Módszer arány intervallumbecslésére.
- -
Módszer variancia intervallumbecslésre.
- -
Az EV-minta abban különbözik a FAE-mintától, hogy a kiválasztott mintaelemek nem függetlenek egymástól.
- -
Módszer átlag intervallumbecslésre, ha a sokasági szórás nem ismert (EV-minta).
- -
Módszer arány intervallumbecslésére EV-minta esetén.
- -
Ha a teljes sokaságot felosztjuk viszonylag homogén rétegekre, és a mintát is ezen a rétegek szerint vizsgáljuk, a variancia csökkenthető.
- -
A kétmintás becslésekre akkor van szükség, amikor két sokaság valamilyen paraméterét, leginkább az átlagát szeretnénk összehasonlítani.
- -
Ha mindkét sokaság közel normális eloszlású, akkor az átlagok különbségének becslésére ez a formula van forgalomban.
- -
Egy becslést torzítatlannak nevezünk, ha az egyes mintákból kapott becslések várható értéke megegyezik a becsülni kívánt mennyiséggel.
- -
A kérdés az, hogy ha egy sokasági jellemzőre több becslés jöhet szóba, hogyan válasszunk közülük, vagyis mikor tekintünk egy becslést jónak, kettő közül melyiket tekintjük jobbnak és kijelenthetjük-e valamelyikről, hogy a legjobb?
- -
Két becslés közül azt részesítjük előnyben, amelyre MSE kisebb.
- -
A standard hiba azt mondja meg, hogy a mintaátlagok mekkora szórással ingadoznak a tényleges sokasági átlag körül.
- -
Mintavételi hibának azokat a hibákat nevezzük, amik kimondottan azért fordulnak elő, mert nem tudjuk, vagy nem akarjuk a teljes sokaságot vizsgálni.
Hipotézisvizsgálat
- -
Az elfogadási tartomány az a tartomány, ahová ha a próba értéke kerül, akkor a nullhipotézist elfogadjuk.
- -
A kritikus tartomány az a tartomány, ahová ha a próba értéke kerül, akkor a nullhipotézist elvetjük.
- -
A szignifikanciaszint a hibás döntés valószínűsége.
- -
A hipotézis megfogalmazása. A próbafüggvény kiválasztása. Szignifikanciaszint és kritikus tartomány. Mintavétel és döntés.
- -
A sokaság normális eloszlású, szórása $\sigma$, $H_0$ a sokaság átlagára vonatkozik, a minta elemszáma $n$.
- -
A sokaság normális eloszlású, szórása nem ismert, $H_0$ a sokaság átlagára vonatkozik, a minta elemszáma $n$
- -
A sokaság tetszőleges eloszlású, szórása nem ismert, $H_0$ a sokaság átlagára vonatkozik, a minta $n$ elemű, elemszáma nagy.
- -
A sokaság tetszőleges eloszlású, $H_0$ a sokasági arányra vonatkozik, a minta $n$ elemű, elemszáma nagy
- -
A sokaság normális eloszlású, $H_0$ a sokasági szórásra vonatkozik, a minta $n$ elemű.
- -
A sokaság eloszlására irányuló vizsgálat.
- -
A sokaságon belül két ismérv függetlenségére irányuló vizsgálat. $H_0$: a két ismérv független, az ellenhipotézis pedig, $H_1$: a két ismérv közti kapcsolat sztochasztikus vagy függvényszerű.
- -
Két sokaságban valamely változó eloszlásának egyezőségére irányuló vizsgálat. $H_0$: a két sokaságban az eloszlás egyező, az ellenhipotézis pedig, $H_1$: a két eloszlás nem egyező.
- -
Mindkét sokaság normális eloszlású, szórásaik $\sigma_X$ és $\sigma_Y$.
- -
A két sokaság normális eloszlású és szórásaik egyformák.
- -
A két sokaság eloszlása és szórása nem ismert, mindkettő szórása véges, és mindkét minta elemszáma elég nagy.
- -
Két sokaság szórásának összehasonlítására irányuló próba, ha mindkét sokaság normális eloszlású. A nullhipotézis $H_0$: $\sigma_1^2 = \sigma_2^2$
- -
Több sokaság várható értékének összehasonlítására vonatkozó próba, ha mindegyik sokaság normális eloszlású és azonos szórású.
- -
A Bartlett-próba több sokaság szórásának összehasonlítására vonatkozó próba, ha mindegyik sokaság normális eloszlású.
Interpolációs polinomok
- -
Az interpoláció egy közelítő módszer, amely a függvény ismert értékei alapján ad közelítést a nem ismert értékeire.
- -
A Lagrange-féle interpolációs polinom megadja azt a polinomot, amely $x_1$-ben $y_1$-et, $x_2$-ben $y_2$-t és így tovább $x_n$-ben $y_n$ értéket vesz föl.
- -
A Newton interpoláció első lépése, hogy elkészítjűk az úgynevezett Newton-együtthatókat. Ezt követően ezek segítségével állítjuk elő a polinomot.
- -
A Hermite interpoláció abban különbözőik a Lagrange és Newton féle interpolációktól, hogy az $x_1, x_2, \dots , x_n$ helyeken nem csak az eredeti polinom-függvény értékeit, hanem a deriváltjait is nézzük.
Sorok & hatványsorok & Taylor-sorok
- -
A mértani sor képlete, példák mértani sorokra.
- -
Egy végtelen sor akkor konvergens, ha részletösszegsorozata konvergens.
- -
Ha egy sorozat határértéke nem 0, akkor a belőle képzett sor divergens.
- -
Speciális sorok.
- -
Egy másik fontos konvergenciakritérium, ami az n-edik tag n-edik gyökének segítségével dönti el a konvergenciát.
- -
Egy fontos konvergenciakritérium, amely az n+1-edik tag és az n-edik tag hányadosával dönti el a konvergenciát.
- -
Speciális sorok.
- -
A sorok konvergenciájának megállapítására vonatkozó képletek.
- -
Tört hatványának sorának konvergenciája a hatványkitevőtől függően.
- -
Olyan sorok, amelyek valójában az első és az utolsó tagon kívül semmilyen más tagot nem tartalmaznak.
- -
Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük, ahol $r$ a konvergenciasugár.
- -
A hatványsorok konvergenciájának vizsgálata.
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Az $e^x$, lnx, sinx és cosx függvények Taylor sorai.
- -
Amikor egy függvény x helyen lévő értékét szeretnénk közelíteni egy Taylor polinommal, akkor lesz egy kis hibánk, mivel a polinom nem teljesen követi a függvényt. Ennek a hibának a kifejezésére van a Lagrange-féle maradéktag.
- -
A végtelen sorok egy speciális fajtája.
Differenciálegyenletek
- -
A differenciálegyenletek olyan egyenletek, amiben az ismeretlenek függvények. Az egyenletben ezeknek a függvényeknek a különböző deriváltjai és hatványai szerepelnek.
- -
Azt mondja meg, hogy az ismeretlen függvény maximum hanyadik deriváltja szerepel az egyenletben.
- -
Ha az ismeretlen függvény és deriváltjai csak első fokon szerepelnek a differenciálegyenletben, akkor az egyenlet lineáris.
- -
Olyan differenciálegyenlet, amelyet az egyenlet szétválasztásával és a két rész külön-külön integrálásával lehet megoldani
- -
Egy differenciálegyenlet homogén fokszámú, ha $y=ux$ helyettesítés után minden $x$-es tag kitevője megegyezik.
- -
A differenciálegyenletek második fő típusa, sok helyen nincs benne a tananyagban.
- -
annak olyan egyenletek, amelyek ugyan nem egzaktak, de egy ügyes trükk segítségével egzakttá tehetők. Itt jön a trükk...
- -
Az egyik legfontosabb típus az y'+Py=Q alakú differenciálegyenlet, amelyre egy részletes megoldási tervet adunk.
- -
A konstans variálás módszere egy megoldási módszer az elsőrendű lineáris differenciálegyenletekhez.
- -
Az elsőrendű lineáris állandó együtthatós differenciálegyenlet egy speciális esete a lineáris elsőrendű egyenleteknek. Azért hívják állandó együtthatósnak, mert a $P(x)$ függvény ilyenkor valamilyen konstans, mondjuk $a$.
- -
Ez olyankor van, ha a homogén megoldás és a partikuláris megoldás hasonlít egymásra. Lássuk mit is jelent ez...
- -
A másodrendű lineáris állandó együtthatós homogén differenciálegyenlet általános alakja: $ay'' + by' + cy = 0 $. Megoldásához a karakterisztikus egyenletet használjuk.
- -
A másodrendű lineáris állandó együtthatós inhomogén differenciálegyenlet általános alakja: $ay'' + by' + cy = Q(x) $. A homogén megoldást megkapjuk a karakterisztikus egyenlet segítségével, a partikuláris megoldást pedig a próbafüggvény módszerrel végezzük.
Differenciálegyenletek, izoklinák
- -
Azon pontok halmazát, melyekben a megoldásfüggvények meredeksége egy adott számmal egyenlő, a differenciálegyenlet izoklinájának nevezzük.
Fourier sorok
- -
A Fourier sorok speciális függvénysorok, amelyeket periodikus függvényekre fejlesztettek ki.
Laplace transzformáció
- -
Hát ez egy elég rémes improprius integrálás, de azért kimondottan hasznos, tehát megér egy megnézést...
- -
Kiszámoljuk pár nevezetes függvény Laplace transzformáltját.
- -
Ez a Laplace transzformált vissza-iránya, ami a differenciálegyenletek megoldásának a végén tartogat izgalmakat.
Geometriai valószínűség, Binomiális tétel
- -
Kéttagú összegek n-edik hatványra emelésének képlete.
- -
Az (a+b) hatványainak általánosítására egy képlet.