- Abszolútértékes egyenletek és egyenlőtlenségek
- Algebra, betűs kifejezések használata
- Egybevágósági transzformációk
- Egyenletrendszerek
- Egyenlőtlenségek
- Elsőfokú egyenletek
- Elsőfokú függvények
- Exponenciális egyenletek és egyenlőtlenségek
- Feladatok függvényekkel
- Függvények
- Függvények ábrázolása
- Gyökvonás, gyökös azonosságok, gyöktelenítés
- Gyökös azonosságok és gyökös egyenletek
- Halmazok
- Hatványozás, hatványazonosságok, normálalak
- Kombinatorika
- Koordinátageometria
- Logaritmus, logaritmusos egyenletek, egyenlőtlenségek
- Másodfokú egyenletek
- Nevezetes azonosságok, binomiális tétel
- Számtani és mértani sorozatok
- Százalékszámítás
- Trigonometria a síkgeometriában
- Trigonometrikus egyenletek és egyenlőtlenségek
- Vektorok
Egyenletrendszerek
Behelyettesítő módszer
A behelyettesítő módszer az egyenletrendszerek megoldásának egyik technikája.
Lényege, hogy kiválasztjuk az egyik egyenletet, ahonnét az egyik változót kifejezzük a másikkal. Ilyenkor célszerű a számunkra szimpatikusabb, egyszerűbb egyenletet választani.
Ezt követően az így kapott kifejezést behelyettesítjük a másik, fel nem használt egyenletbe, így egy egyismeretlenes egyenletet kapunk, amit már meg tudunk oldani.
Egyenlő együtthatók módszere
Az egyenlő együtthatók módszere egy megoldási technika az egyenletrendszerekhez.
Lényege, hogy ha a két egyenletben vagy az $x$ vagy az $y$ együtthatói megegyeznek, akkor a két egyenletet egymásból kivonva azok kiesnek, és egy egyismeretlenes egyenletet kapunk, amit már meg tudunk oldani.
Ha az együtthatók egymás ellentettjei lennének, akkor pedig össze kell adni a két egyenletet.
A módszer akkor is működik, ha nem volnának egyenlő együtthatók, ilyenkor bátran szorozhatjuk az egyenleteket addig, amíg nem lesznek egyenlő együtthatók.
Oldd meg az alábbi egyenletrendszereket.
a)
\( \frac{3}{x+y} - \frac{2}{x-y}=3 \)
\( \frac{12}{x+y} - \frac{5}{x-y}=9 \)
b)
\( \frac{4x}{x+y}+\frac{6}{x-y}=6 \)
\( \frac{12x}{x+y} - \frac{4}{x-y}=7 \)
Oldd meg az alábbi egyenletrendszereket.
a)
\( x^2-4x+3y+6=0 \)
\( 2x+2y-4=0 \)
b)
\( 3x^2-3y=0 \)
\( 5y^4-5x=0 \)
c)
\( 3xy-y^2=0 \)
\( 2x^2+14x-y^2=0 \)
Oldd meg az alábbi egyenletrendszert.
a)
\( x^2y+xy^2=0 \)
\( 4x+xy+4y=-16 \)
b)
\( x^2y+xy^2=-48 \)
\( 4x+xy+4y=-16 \)
Oldd meg az alábbi egyenletrendszert.
\( 5x-3y=131 \)
\( -4x-7y=-48 \)