- Mátrixok inverze
- Mátrixok LU-felbontása és egyéb mátrixfelbontások
- Interpolációs polinomok
- Valószínűségszámítás alapok
- Visszatevéses és visszatevés nélküli mintavétel
- Eloszlásfüggvény, sűrűségfüggvény
- Várható érték és szórás
- Exponenciális eloszlás és normális eloszlás
- Poisson eloszlás, binomiális eloszlás
- Hipotézisvizsgálat, próbafüggvények
Poisson eloszlás, binomiális eloszlás
Hipergeometriai eloszlás
A hipergeometriai eloszlás egy diszkrét eloszlás.
Ismert, hogy mennyi az összes elem és az összes selejt, vagyis $N, K$ és $n$.
\( P(X=k) = \frac{ \binom{K}{k}\binom{N-K}{n-k} }{ \binom{N}{n} } \)
A hipergeometriai eloszlás várható értéke:
\( E(X) = n \frac{K}{N} \)
A hipergeometriai eloszlás szórása:
\( D(X) = \sqrt{ n \frac{K}{N} \left( 1- \frac{K}{N} \right) \frac{N-n}{N-1}} \)
Binomiális eloszlás
A binomiális eloszlás egy diszkrét eloszlás.
Csak valami %-os izé ismert, a várható érték, az átlag, az arány, a valószínűség, továbbá $X$ korlátos diszkrét valószínűségi változó.
\( P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \)
A binomiális eloszlás várható értéke:
\( E(X) = np \)
A binomiális eloszlás szórása:
\( D(X) = \sqrt{np (1-p) } \)
Poisson eloszlás
A Poisson eloszlás egy diszkrét eloszlás, ahol előre ismert a várható érték, és a valószínűségi változó nem korlátos, vagyis tetszőleges bármilyen nagy érték is lehet.
Például valamilyen anyagban a hibák száma, vagy egy adott idő alatt bekövetkező események száma. A Poisson eloszlásos feladatokban általában valamilyen százalék vagy arány vagy várható érték vagy átlag vagy valószínűség van megadva. Mondjuk egy könyvben az oldalak 80%-ában nincs hiba, vagy az 20 méter hosszú ruhaszövetek harmadában nincs hiba, vagy egy üzletben óránként várhatóan 13 vevő érkezik, vagy egy bankban percenként átlag 24 tranzakció történik, vagy 0,2 a valószínűsége, hogy 10 perc alatt nem érkezik segélyhívás. Ezek mind Piosson eloszlások, ahol az $X$ nem korlátos diszkrét valószínűségi változó.
\( P(X=k) = \frac{ \lambda^k }{k!} e^{-\lambda} \)
A Poisson eloszlás várható értéke:
\( E(X) = \lambda \)
A Poisson eloszlás szórása:
\( D(X) = \sqrt{\lambda } \)
Exponenciális eloszlás
Az exponenciális eloszlás egy folytonos eloszlás.
Eloszlásfüggvénye:
\( F(x) = \begin{cases} 0 \quad \text{ha} \; x \leq 0\\ 1-e^{-\lambda x} \quad \text{ha} \; 0 < x \end{cases}\)
Sűrűségfüggvénye:
\( f(x) = \begin{cases} 0 \quad \text{ha} \; x \leq 0 \\ \lambda e^{-\lambda x} \quad \text{ha} \; 0<x \end{cases}\)
Az exponenciális eloszlás várható értéke:
\( E(X) = \frac{1}{\lambda} \)
Az exponenciális eloszlás szórása:
\( D(X) = \frac{1}{\lambda} \)
a) Egy úton 30 nap alatt 12 napon történt baleset. Ebből a 30 napból kiválasztunk egy hetet, mi a valószínűsége, hogy ezen a héten 2 balesetes nap van?
b) Egy úton 30 napból átlag 12 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van?
c) Egy úton 30 nap alatt átlag 12 baleset történik. Mi a valószínűsége, hogy egy adott héten 2 baleset van?
Egy bankba óránként átlag 24 ügyfél érkezik.
a) Mi a valószínűsége, hogy 7 perc alatt éppen 2-en érkeznek?
b) Mi a valószínűsége, hogy 7 perc alatt legfeljebb 2-en érkeznek?
c) Mi a valószínűsége, hogy 5 perc alatt legalább 2-en érkeznek?
Egy biztosítónál naponta átlagosan 5 kárbejelentés érkezik lakásbiztosítással kapcsolatban.
a) Mi a valószínűsége, hogy egy nap a várhatónál kevesebb érkezik?
b) Mi a valószínűsége, hogy egy héten három nap lesz a várhatónál kevesebb bejelentés?
Egy bankba az esetek 0,3%-ában nem érkezik ügyfél egy óra alatt. Az ügyfelek száma Poisson eloszlású.
a) Mekkora az ügyfelek várható száma óránként?
b) $P(E(X)-D(X)<2X<E(X)+D(X))=$ ?
Egy újságárus óránként 48 darab újságot szokott eladni, amiből átlag 36 napilap. Mi a valószínűsége, hogy
a) 10 perc alatt legfeljebb 2 napilapot ad el?
b) 5 perc alatt éppen 7 újságot ad el?
c) a 7 eladott újságból 4 napilap?
Annak a valószínűsége, hogy egy hírlapárus negyedóra alatt egyetlen lapot sem tud eladni $e^{-6}$.
a) Mennyit szokott eladni átlagosan óránként?
b) Mekkora valószínűséggel ad el félóra alatt 10 darabot?
c) Legfeljebb milyen hosszú ideig nem tud eladni egyetlen lapot sem legalább 0,6 valószínűséggel?
Egy bizonyos hónap 30 napjából átlag 12 nap szokott esni. Mi a valószínűsége, hogy egy héten három nap esik?
Egy könyvben 100 oldalon átlag 80 nyomdahiba található. Mi a valószínűsége, hogy 10 egymást követő oldalon 7 hiba lesz?
Egy vizsgán a hallgatóknak általában 60%-a megbukik. Egy nap 10-en vizsgáznak, mi a valószínűsége, hogy
a) legfeljebb 2-en mennek át?
b) legalább 2-en mennek át?
Egy este átlagosan óránként 10 hullócsillagot látni. Ha a hullócsillagok száma Poisson-eloszlást követ, mekkora a valószínűsége, hogy negyed óra alatt,
a) kettőt látni?
b) legfeljebb kettőt látni?
c) legalább kettőt látni?
d) legfeljebb milyen hosszú ideig nem látni egyetlen hullócsillagot sem legalább 0,7 valószínűséggel?
Egy szövet anyagában átlag 10 méterenként van apró hiba.
a) Mi a valószínűsége, hogy egy 6 méteres darab hibátlan?
b) Mi a valószínűsége, hogy ha 30 méternyi szövetet 6 méteres darabokra vágnak, akkor pontosan két hibás darab lesz?
c) Mi a valószínűsége, hogy ha 30 méternyi szövetet 6 méteres darabokra vágnak, akkor mind hibátlan lesz?
d) Mi a valószínűsége, hogy ha 30 méternyi szövetet 5 méteres darabokra vágnak, akkor mind hibátlan lesz?
Egy ügyfélszolgálatra óránként átlag 18 hívás fut be. Mi a valószínűsége, hogy
a) 10 perc alatt legalább két hívás érkezik, ha a hívások száma Poisson-eloszlású?
b) két hívás között 5 perc is eltelik, ha a hívások közt eltelt idő exponenciális eloszlású?
Az $X$ valószínűségi változó várható értéke 20, szórása 4. Lehet-e Poisson, illetve binomiális eloszlású?
Ha igen, mekkora a $P(X=20)$ valószínűsége?
Az $X$ valószínűségi változó várható értéke 49, szórása 7. Lehet-e Poisson, illetve binomiális eloszlású?
Ha igen, mekkora a $P(X=18)$ valószínűsége?
Itt az idő, hogy megnézzük hogyan működik a három legfontosabb diszkrét eloszlás, a hipergeometriai, a binomiális és a Poisson eloszlás.
Nézzünk mindegyikhez egy kis mesét.
Ez tulajdonképpen az a történet, hogy egy dobozban van 30 golyó, amiből 12 piros.
Kiveszünk 7 darabot és mi a valószínűsége, hogy 2 piros?
Itt már más a helyzet, ugyanis nem pontosan 12, hanem átlag 12 balesetes nap van.
Ez Poisson pedig még izgalmasabb lesz. A kérdés mindhárom mesében ugyanaz, hogy mekkora a P(X=2) valószínűség. A válasz viszont már mindegyik mesében más lesz. Az első két mesében X a balesetes napok száma, a harmadikban pedig a balesetek száma.
Ebben a két történetben az a közös, hogy egyikben sem tudjuk, hány baleset történik a 30 nap alatt pontosan, csak azt tudjuk, hogy várhatóan mennyi. Amiben viszont eltérnek egymástól, hogy az egyikben X a balesetes napok száma, a másikban viszont a balesetek száma. Ez egy döntő különbség.
ISMERT,HOGY MENNYI AZ ÖSSZES ELEM ÉS AZ ÖSSZES SELEJT: HIPERGEOMETRIAI
ELOSZLÁS
CSAK VALAMI %-OS IZÉ ISMERT,
A VÁRHATÓ, AZ ÁTLAG, AZ ARÁNY, A VALÓSZÍNŰSÉG: BINOMIÁLIS
ELOSZLÁS vagy POISSON
ELOSZLÁS
Ez a bizonyos λ tehát a Poisson eloszlás várható értéke.
A várható értéket megnézhetjük a másik két eloszlásnál is. Ott erre külön képletek vannak.
Nézzük meg a szórásokat is. Erre mindegyik eloszlásnál külön képlet van forgalomban.
Most pedig lássuk a valószínűségeket.
Az X valószínűségi változó n és p paraméterű binomiális eloszlást követ – vagy rövidebben binomiális eloszlású – pontosan akkor, ha
[\bold P (X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k=0, 1, 2, ... , n \quad ,]
ahol 0 < p < 1. Azt, hogy az X valószínűségi változó n és p paraméterű binomiális eloszlást követ, a következő módon szoktuk jelölni: X ∼ B(n,p). Speciálisan, ha X ∼ B(1,p), akkor X-et Bernoulli-eloszlásúnak nevezzük.
A valószínűségszámításban és a statisztikában a Poisson-eloszlás egy diszkrét valószínűségi eloszlás, a binomiális eloszlás határeloszlása. Kifejezi az adott idő alatt ismert valószínűséggel megtörténő események bekövetkezésének számát
Az X valószínűségi változó λ paraméterű Poisson-eloszlást követ – vagy rövidebben: Poisson-eloszlású – pontosan akkor, ha
[\bold P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}, \quad k=0, 1, 2, ... \quad]
ahol λ > 0 konstans.
A binomiális eloszlás
Egy dobókockával négyszer egymás után dobunk. Mi a valószínűsége, hogy mind a négy dobás egyes? Annak a valószínűsége, hogy egy dobás egyes világos, hogy 1/6. Ha tehát mind a négy dobás egyes, akkor ennek valószínűsége:
Mekkora annak a valószínűsége, hogy a négy dobásból csak két dobás egyes? Ekkor az egyes dobás valószínűsége még mindig 1/6, míg annak a valószínűsége, hogy a dobás nem egyes 5/6. A kapott eredmény tehát
ez az eredmény azonban hibás! Azért hibás, mert ugyan négy darab 1-est csak egyféleképpen tudunk dobni – történetesen, hogy mindegyik dobás 1-es – ám két 1-est és két nem 1-est jóval többféleképpen. A négy hely közül azt a kettőt, ahol az 1-es lesz hatféleképpen lehet kiválasztani, a helyes megoldás tehát
Ez a sajnálatos körülmény azonban jelentős fennakadásokat okozhat a feladatok megoldásánál. Az emberek legnagyobb része ugyanis hajlamos elfelejteni ezt a kis kellemetlenséget, hogy kell az a bizonyos 6-os szorzó, vagy ha épp emlékszik is rá, hogy kell oda még valami, miért pont 6-os. Hogy mindezen szörnyűségeket elkerüljük, megalkotunk egy képletet direkt az ilyen esetekre. A képlet a következő:
Egy esemény bekövetkezésére van n darab független lehetőség. Az esemény minden egyes alkalommal vagy bekövetkezik vagy nem. A bekövetkezés valószínűsége minden egyes alkalommal p. Annak valószínűsége, hogy az n darab lehetőség közül éppen x-szer következik be:
Nézzünk néhány feladatot.
Egy nap 0,2 valószínűséggel esik az eső. Mi a valószínűsége, hogy egy hét alatt három nap esik?
Azonosítsuk be, hogy ki kicsoda. Egy héten maximum hét nap lehet, így a lehetőségek száma hét: n=7 Az esős napok száma három, vagyis x=3, annak a valószínűsége pedig, hogy egy nap esik, p=0,2. Ekkor:
Egy üzletben 100 vásárlóból átlag 7-en reklamálnak. Mi a valószínűsége, hogy ha 10-en állnak sorba, akkor 2-en fognak reklamálni?
a)Mi a valószínűsége, hogy a 10 emberből legfeljebb ketten reklamálnak?
b)Mi a valószínűsége, hogy a 10 emberből legalább ketten reklamálnak?
Ha 10-en állnak sorba, akkor a reklamálók száma maximum 10, ezek szerint n=10. A képletben p mindig 1 db bekövetkezés valószínűsége. Most tehát p annak a valószínűsége, hogy 1 db ember reklamál. Ha 100 vásárlóból 7-en reklamálnak, akkor a vásárlók 7%-a reklamál, vagyis p=0,7. Annak valószínűsége, hogy éppen ketten reklamálnak:
a) annak valószínűsége, hogy legfeljebb ketten reklamálnak
ezeket egyesével mind kiszámoljuk.
b) Most számoljuk ki annak valószínűségét, hogy a 10 emberből legalább ketten reklamálnak. Ekkor nem lenne célravezető, hogy
ez ugyanis kicsit sok számolással jár. Helyette a komplementer eseményt fogjuk számolni. Történetesen azt, hogy kettőnél kevesebb ember reklamál, ami azt jelenti, hogy vagy nulla, vagy egy ember reklamál.
ez jóval kellemesebb.
100 emberből átlag 80-nak van bankkártyája. Egy bevásárlóközpontban egy adott időpontban 1000 ember vásárol. Várhatóan hány rendelkezik bankkártyával? Ha 10-en állnak sorba, mi a valószínűsége, hogy 7 embernek lesz bankkártyája? Mi a valószínűsége, hogy van olyan ember, akinek van bankkártyája?
A 10 sorba álló mindegyike rendelkezhet bankkártyával, az összes lehetőség száma így n=10. annak valószínűsége, hogy valakinek van bankkártyája 0,8 hiszen 100 emberből átlag 80-nak van, ami 80%-ot jelent. Annak valószínűsége, hogy a sorba állók közül 7-nek van:
Az, hogy van olyan ember akinek van bankkártyája, azt jelenti, hogy legalább egy embernek van, vagyis
Ezt kiszámolhatjuk úgy, hogy
ám ez roppant időigényes lenne, ezért helyette
Módszert alkalmazzuk. Ekkor
Az USA déli államainak kőolaj ellátásához a Mexikói-öbölbe telepített 30 olajfúró toronyból legalább 27-nek kell zavartalanul működnie. A működésben kisebb zavar 0,02 valószínűséggel fordul elő. Mi a valószínűsége, hogy egy nap zavartalan lesz az ellátás?
Az ellátás akkor zavartalan, ha legalább 27 olajfúró torony működik. Ennek valószínűségét kell kiszámolnunk. Itt n=30, p=0,98, tehát:
Az előző képsorban megkezdtük a barátkozást a három legfontosabb diszkrét eloszlással, most pedig nézzünk néhány feladatot.
Egy bankba óránként átlag 24 ügyfél érkezik.
a)Mi a valószínűsége, hogy 7 perc alatt éppen 2-en érkeznek?
b)Mi a valószínűsége, hogy 7 perc alatt legfeljebb 2-en érkeznek?
c)Mi a valószínűsége, hogy 5 perc alatt legalább 2-en érkeznek?
Óránként átlag 24 ügyfél érkezik, de ez csak egy átlag. Vagyis megeshet, hogy egyik órában nem jön senki, a másikban pedig 50-en. Az ügyfelek száma tehát nem korlátos, akármennyi lehet. Na azért nem valószínű, hogy a következő 7 percben 7 milliárd ügyfél érkezik, de ki tudja. Ha még emlékszünk a balesetes példára, balesetes nap biztosan csak 7 darab lehet egy héten, de baleset lehet akár 7 milliárd is. Az ügyfelek száma a bankban tehát nem a balesetes nap, hanem a baleset.
Ez tehát egy POISSON ELOSZLÁS így szükségünk van a várható értékre.
Ha óránként 24 ügyfél érkezik, akkor percenként 24/60=0,4 és 7 perc alatt 7-szer annyi: 2,8.
Öt perc alatt várhatóan nem ugyanannyi ügyfél érkezik, mint 7 perc alatt, ezért a várható értéket itt más lesz.
Ha óránként 24 ügyfél érkezik, akkor percenként 24/60=0,4 és 5 perc alatt 5-ször annyi, vagyis éppen 2.
azt jelenti, hogy
Ami egy kicsit sok, ezért inkább a komplementerrel számoljunk.
Egy bizonyos évszakban minden nap 0,2 valószínűséggel esik eső. Mi a valószínűsége, hogy egy héten három nap esik?
X=esős napok száma
Ez biztosan korlátos, mert egy héten maximum 7 esős nap lehet.
Egy autópályán 100 autóból átlag 12-nél találnak valamilyen szabálytalanságot. 10 autót véletlenszerűen megállítva mi a valószínűsége, hogy
a) pontosan két autónál lesz valamilyen szabálytalanság?
b) legfeljebb két autónál lesz szabálytalanság?
c) legalább két autónál lesz szabálytalanság?
d) két egymást követő autó szabálytalan?
X=szabálytalan autó
10 autót állítanak meg, ezért meglepő lenne, ha mondjuk 13 lenne szabálytalan.
A szabálytalan autók száma tehát korlátos, maximum 10 lehet.
p=annak valószínűsége, hogy egy autó szabálytalan.
Ha 100 autóból 12 szabálytalan, akkor az autók 12%-a szabálytalan, így
Ez így kicsit sok lesz, úgyhogy inkább a komplementerrel számolunk.
Egy autó p=0,12 valószínűséggel szabálytalan. És a másik is.
A közúti ellenőrzés során óránként átlag 8 autónál találnak valamilyen szabálytalanságot. Mi a valószínűsége, hogy
a) negyed óra alatt háromnál?
b) fél óra alatt legfeljebb kettőnél?
X=szabálytalan autó
X itt is a szabálytalan autók száma, ahogyan az előbb.
De az előbb az volt, hogy a 10 megállított autóból hány szabálytalan, most meg, hogy negyed óra alatt hány szabálytalan.
10 autóból legrosszabb esetben is csak 10 lehet szabálytalan, de negyed óra alatt bármennyi.
Most tehát X nem korlátos, így POISSON ELOSZLÁS.
Ha óránként 8 autó szabálytalan, akkor negyed óra alatt a negyede: 8/4=2
Fél óra alatt kétszer annyi szabálytalan autó várható.
Végül itt jön egy olyan eset, amiben mindhárom eloszlás felbukkan majd.
Ehhez csinálnunk kell egy kis helyet.
Egy szövet anyagában átlag 10 méterenként van apró hiba.
a) Mi a valószínűsége, hogy egy 6 méteres darab hibátlan?
b) Mi a valószínűsége, hogy ha 30 méternyi szövetet 6 méteres darabokra vágnak,
akkor pontosan két hibás darab lesz?
c) Egy 120m-es szövetet 6 méteres darabokra vágtak föl és így 9 hibás darab keletkezett. Ha 5 darabot kiválasztunk, mi a valószínűsége, hogy 2 hibás?
X=hibák száma
Ha azt szeretnénk, hogy hibátlan legyen, akkor a hibák száma alighanem nulla.
Átlag 10 méterenként van 1 hiba.
De ez nem azt jelenti, hogy a szövetet úgy gyártják, hogy na megint lement a 10 méter, akkor tegyünk be egy hibát.
A hibák tehát teljesen kiszámíthatatlan módon helyezkednek el, így 10 méteren előfordulhat akár 2 hiba is, sőt 13, sőt bármennyi.
Ez tehát egy POISSON ELOSZLÁS és ha 10 méteren van átlag 1 hiba, akkor 6 méteren 0,6:
Y=hibás darabok száma
Hiba lehet bármennyi, de hibás darab maximum 5, tehát Y korlátos.
Itt p annak a valószínűsége, hogy egy darab hibás.
Lássuk csak, mekkora lehet annak a valószínűsége, hogy egy darab hibás.
Az előző kérdés az volt, hogy egy darab milyen valószínűséggel hibátlan.
Nos akkor hibás:
Ha 120 méternyi szövetet 6 méteres részekre vágnak, akkor 20 darab keletkezik.
Úgy hozta a sors, hogy ezek közül 9 hibás.
Kiválasztunk 5 darabot.
Z=hibás darabok száma
Egy biztosítónál naponta átlagosan 5 kárbejelentés érkezik lakásbiztosítással kapcsolatban.
a) Mi a valószínűsége, hogy egy nap a várhatónál kevesebb érkezik?
b) Mi a valószínűsége, hogy egy héten három nap lesz a várhatónál kevesebb bejelentés?
X=kárbejelentések száma
Bármikor előfordulhat, hogy a földönkívüliek megtámadják a Földet és ilyenkor a lakás kárbejelentések száma napi egymillió is lehet. Vagyis X nem korlátos.
Y= napok száma
amikor az átlagnál kevesebb a bejelentés
Egy héten maximum hét nap van, így Y korlátos.
Nézzük mi az amit tudunk:
annak valószínűsége, hogy egy nap az átlagnál kevesebb a bejelentés
5.7.
Egy bankba az esetek 0,3%-ában nem érkezik ügyfél egy óra alatt. Az ügyfelek száma Poisson eloszlású.
a) Mekkora az ügyfelek várható száma óránként?
b)
X = ügyfelek száma
Nincs ügyfél az esetek 0,3%-ában
Nekünk a kitevőben lévő -ra van szükségünk.
Úgy tudjuk onnan lecsalogatni, hogy vesszük mindkét oldal e alapú logaritmusát.
Van egy ilyen, hogy
Úgyhogy pápá
Ezzel megvolnánk.
Várhatóan 5,81 ügyfél van óránként.
Pontosan 5,81 ügyfél persze nem fog érkezni, legfeljebb a hullaházba.
Ezt úgy kell érteni, hogy átlagosan 5,81 ügyfél.
Nézzük mi van a másik kérdéssel.
Az kevésbé jól néz ki.
X az ügyfelek számát jelenti.
Ha az ügyfelek még életben vannak akkor ez csak egész szám lehet.
5.8.
Egy újságárus óránként 48 darab újságot szokott eladni, amiből átlag 36 napilap. Mi a valószínűsége, hogy
a) 10 perc alatt legfeljebb 2 napilapot ad el?
b) 5 perc alatt éppen 7 újságot ad el?
c) a 7 eladott újságból 4 napilap?
X = eladott napilapok száma 10 perc alatt
X nem korlátos, ha megérkezik a turistacsoport Kínából akik mind ki vannak éhezve egy kis napilapra akkor az újságárus akár 1000 darabot is eladhat.
Az átlagos eladás óránként 36 napilap ami 10 perc alatt a hatoda:
Y= eladott újságok száma 5 perc alatt
Ez is Poisson eloszlás.
A várható érték óránként 48 darab, 5 perc alatt pedig:
Z = a 7 eladott újságból a napilapok száma
Nem tudjuk, hogy összesen hány újság és hány napilap van.
De azt tudjuk, hogy 48 újságból átlag 36 napilap, ami 75%
5.9.
Annak valószínűsége, hogy egy hírlapárus negyedóra alatt egyetlen lapot sem tud eladni
a) Mennyit szokott eladni átlagosan óránként?
b) Mekkora valószínűséggel ad el félóra alatt 10 darabot?
c) Legfeljebb milyen hosszú ideig nem tud eladni egyetlen lapot sem legalább 0,6 valószínűséggel?
X = eladott újságok száma
Ezek az újságárusok mindig Poisson eloszlással árulják az újságokat.
egyet sem tud eladni valószínűséggel
Várhatóan 6 darabot ad el negyedóra alatt.
Akkor óránként feltehetően négyszer annyit ad el: 24 darabot.
Lássuk csak, fél óra alatt várhatóan 12 darabot ad el:
Fogalmunk sincs, hogy milyen hosszú ideig nem tud eladni egyetlen újságot sem. Legyen ez az idő t.
Nos ez remek, már csak az a kérdés, hogy akkor most mi van.
Amit kaptunk, a Poisson eloszlás várható értéke t idő alatt.
Vagyis várhatóan ennyi újságot vesznek t idő alatt.
Mennyi vajon a t?
15 perc alatt 6 darabot vesznek, t idő alatt 0,511 darabot.
Legfeljebb 1,2775 perc telik el úgy, hogy még legalább 60% eséllyel nem vesznek újságot.
5.10.
Egy bizonyos hónap 30 napjából átlag 12 nap szokott esni. Mi a valószínűsége, hogy egy héten három nap esik?
X = esős napok száma
Összes nap 30 amiből esős 12:
A vizsgált napok száma 7 és ebből esnie kell háromszor:
De sajnos van egy kis gond.
A 30 napból ugyanis átlag 12 nap szokott esni, ami azt jelenti, hogy például idén eshet 25 napon keresztül is vagy csak 5 napig.
Fogalmunk sincs tehát róla, hogy hány esős nap van, csak az átlagot ismerjük.
Mivel azonban X korlátos, hiszen egy héten maximum 7 nap eshet, ez egy Binomiális eloszlás lesz.
5.11.
Egy könyvben 100 oldalon átlag 80 nyomdahiba található. Mi a valószínűsége, hogy 10 egymást követő oldalon 7 hiba lesz?
X = hibák száma
Összes oldal 100 ahol 80 hiba található:
A vizsgált oldalak száma 10 és itt 7 hibának kell lennie:
De sajnos van egy kis gond.
A 100 oldalon ugyanis átlag 80 hiba szokott lenni, ami azt jelenti, hogy például lehet 150 darab is vagy éppen csak 25.
Fogalmunk sincs tehát róla, hogy hány hiba van, csak az átlagot ismerjük.
A vizsgált 10 oldalból hibás oldal maximum 10 lehet, viszont hiba lehet bármennyi.
X a hibák száma, ezért nem korlátos.
hiba várható 1 oldalon
5.12.
Egy vizsgán a hallgatóknak általában 60%-a megbukik. Egy nap 10-en vizsgáznak, mi a valószínűsége, hogy
a) legfeljebb 2-en mennek át?
b) legalább 2-en mennek át?
X = hányan mennek át
Mivel 10-en vizsgáznak, 10-nél többen biztosan nem mennek át.
Lássuk csak mi az amit tudunk:
Van itt azonban egy kis probléma.
X azt jelenti, hogy hányan mennek át, így aztán ez a bizonyos p is annak a valószínűsége kell, hogy legyen, hogy valaki átmegy.
Az X-nek és a p-nek tehát mindig ugyanarra kell vonatkoznia.
Semmi baj nincs azzal, hogy p annak a valószínűsége, hogy egy vizsgázó megbukik, de akkor X-nek a megbukott hallgatók számát kell jelenti.
Mivel most X azt jelenti, hogy hányan mennek át, ezért p is annak a valószínűsége, hogy valaki átmegy.
5.13.
Az X valószínűségi változó egyenletes eloszlású, várható értéke 10, szórása .
Mekkora a , a és a valószínűség?
Az egyenletes eloszlás várható értéke:
És a szórása:
Ez egy egyenletrendszer.
Ha a két egyenletet összeadjuk,
Most pedig lássuk az eloszlásfüggvényt.
5.14.
Egy tűzoltóságra átlagosan kétóránként érkezik riasztás. Mi a valószínűsége, hogy
a) 8 óra alatt legfeljebb 2 riasztás érkezik?
b) egy 800-kor érkező riasztás után a következő 930 és 1000 között érkezik?
X = riasztások száma
A riasztások száma diszkrét eloszlás és lássuk csak…
8 óra alatt lehet bármennyi, tehát Poisson.
Kétóránként szokott riasztás érkezni, tehát 8 óra alatt várhatóan 4 riasztás lesz.
Y = a riasztások közt eltelt idő
Az eltelt idő folytonos eloszlás és exponenciális.
Általában 2 óra szokott eltelni a riasztások közt, tehát a várható érték 2 óra.
EXP
5.15.
Egy ügyfélszolgálatra érkező segélyhívások száma Poisson-eloszlású, a köztük eltelt idő exponenciális eloszlású valószínűségi változó, annak valószínűsége, hogy 5 perc alatt érkezik hívás
a) Hány hívás érkezik átlagosan óránként?
b) Mekkora a valószínűsége, hogy fél óra alatt legalább három hívás érkezik?
c) Mekkora a valószínűsége, hogy két hívás közt legalább 10 perc telik el?
X = hívások száma
5 perc alatt érkezik hívás
Ha 5 perc alatt akkor egy óra alatt
És fél óra alatt
Y = a hívások közt eltelt idő
Ez a menet közben hajlamos mindig megváltozni.
Lássuk most éppen mennyi.
Ha fél óra alatt 12 hívás jön,
akkor a hívások között 5 perc szokott eltelni: