10 témakör, 169 rövid és szuper érthető epizód

Ez az ütős GTK matek 2 kurzus segít mindent azonnal megérteni és sikeresen vizsgázni. 169 rövid és szuper-érthető epizód segítségével 10 témakörön keresztül vezet végig az őrülten jó GTK matek 2 rögös útjain. Mindezt olyan laza stílusban, mintha csak a rántotta elkészítésének problémájáról lenne szó.

Tartalomjegyzék: 

A kurzus 10 szekcióból áll: Improprius integrálok, Komplex számok, Mátrixok, vektorok, Lineáris tér, függetlenség, Lineáris egyenletrendszerek, mátrix inverze, Sajátérték, sajátvektor, diagonalizálás, Többváltozós függvények, Számsorozatok, Végtelen számsorok, Hatványsorok, Taylor-sorok

Improprius integrálok

Komplex számok

Többváltozós függvények

  • -

    A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot.

  • -

    A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.

  • -

    A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.

  • -

     másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.

  • -

    Egy általános módszer, amivel kétváltozós függvények szélsőértékeit és nyeregpontjait lehet meghatározni

  • -

    Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.

  • -

    Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.

  • -

    Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.

  • -

    A parciális deriváltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.

  • -

    Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.

  • -

    Egy függvény akkor implicit, ha $y$ nincs kifejezve, vagyis nem $y=\dots$ alakú.

  • -

    Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.

Számsorozatok

Végtelen számsorok

Hatványsorok, Taylor-sorok

  • -

    Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük, ahol $r$ a konvergenciasugár.

  • -

    hatványsorok konvergenciájának vizsgálata.

  • -

    Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...

  • -

    Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...

  • -

    Az $e^x$, lnx, sinx és cosx függvények Taylor sorai.

  • -

    Amikor egy függvény x helyen lévő értékét szeretnénk közelíteni egy Taylor polinommal, akkor lesz egy kis hibánk, mivel a polinom nem teljesen követi a függvényt. Ennek a hibának a kifejezésére van a Lagrange-féle maradéktag. 

  • -

    A végtelen sorok egy speciális fajtája.