- Algebra, betűs kifejezések használata
- Nevezetes azonosságok, binomiális tétel
- Elsőfokú egyenletek
- Egyenletrendszerek
- Másodfokú egyenletek
- Egyenlőtlenségek
- Abszolútértékes egyenletek és egyenlőtlenségek
- Hatványozás, hatványazonosságok, normálalak
- Gyökös azonosságok és gyökös egyenletek
- Exponenciális egyenletek és egyenlőtlenségek
- Logaritmus, logaritmusos egyenletek, egyenlőtlenségek
- Függvények
- Elsőfokú függvények
- Függvények ábrázolása
- Számtani és mértani sorozatok
- Kamatos kamat és pénzügyi számítások
- Vektorok
- Koordinátageometria
- Kombinatorika
- Valószínűségszámítás
- A várható érték
- Geometriai valószínűség
Nevezetes azonosságok, binomiális tétel
Nevezetes azonosságok
\( (a+b)^2 = a^2 +2ab + b^2 \)
\( (a-b)^2 = a^2 -2ab + b^2 \)
\( a^2 - b^2 = (a-b)(a+b) \)
Köbös azonosságok
\( a^3 + b^3 = (a+b) \left( a^2 -ab +b^2 \right) \)
\( a^3 - b^3 = (a-b) \left( a^2 +ab +b^2 \right) \)
\( (a+b)^3 = a^3 +3a^2b +3ab^2 + b^3 \)
\( (a-b)^3 = a^3 -3a^2b +3ab^2 -b^3 \)
Kifejezés értelmezési tartománya
Egy kifejezés értelmezési tartományán azt a legbővebb halmazt értjük, ahol értelmezve van.
A következőket érdemes megjegyezni:
\( \sqrt[ \text{páros}]{ \text{ez itt} \geq 0} \quad \sqrt[ \text{páratlan} ]{ \text{ez itt bármi}} \quad \log{ \left( \text{ez itt} > 0 \right)} \quad \text{ tört nevező} \neq 0 \)
pl.
$ \frac{2}{x-3}$ értelmezési tartománya $x \in R \setminus \{ 3 \}$, mert tört van benne és a tört nevezője nem lehet nulla ($x \neq 3$)
$\sqrt{2x+5}$ értelmezési tartománya $x \in \left[ - \frac{5}{2}, \infty \right[ $, mert páros gyök alatt van (második) és így a gyök alatti kifejezés $\geq 0$
Binomiális tétel
\( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \)
Binomiális tétel
Binomiális tétel:
\( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k}b^k = \binom{n}{0} a^n + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n} b^n \)
Végezzük el az alábbi műveleteket:
a) \( (x+3)^2= ? \)
b) \( (y-5)^2= ? \)
c) \( \left( 2x+3y^2 \right)^2 = ? \)
d) \( \left( 3a^2-ab^3 \right)^2 = ? \)
Egyszerűsítsük, amennyire csak lehet:
e) \( \frac{xy^3-4x^3y}{xy^2+2x^2y} \)
f) \( \frac{x^4-y^4}{x^4y^2+x^2y^4} \)
Végezzük el az alábbi műveleteket:
a) \( 12x + 3x^2 - 4x^3 - 7x - x^4 + x^3 \)
b) \( 4x(5x^4 + 3x^2) - (4x^2 +5)(x+6) \)
c) \( (3x^4 +4x +x^3 y^2 ) \cdot x^2 + (4x^3 +5x^2y^4 + x^3 y^2 ) : x^2 \)
d) \( x^2 \cdot (3x^4 +4y^5 +6 z^3) \)
e) \( x^2 \cdot (3x^4 \cdot 4y^5 \cdot 6z^3) \)
f) \( \left( \frac{1}{x^2+2xy+y^2} + \frac{1}{x^2-y^2} + \frac{1}{x^2-2xy+y^2} \right) : \left( \frac{4x^2}{x^2-y^2} -1 \right) \)
Egyszerűsítsük az alábbi törteket
a) \( \frac{x-y}{\sqrt{x} + \sqrt{y} } \)
b) \( \frac{ 2 \sqrt{x}+1}{\sqrt{x}+1} + \frac{ \sqrt{x}-2}{\sqrt{x}-1} - \frac{4x-2}{x-1} \)
a) \( (x+2)^3= ? \)
b) \( (x-4b)^3 = ? \)
c) \( \left( \frac{x+y}{x^3-y^3} + \frac{2}{(x-y)^2} - \frac{1}{x^2+xy+y^2} \right) : \frac{x^2-4y^2}{x^2-2xy+y^2} = ? \)
Mi az értelmezési tartományuk?
a) \( \frac{3}{x} \)
b) \( \frac{x}{x-2} \)
c) \( \frac{5}{(x-2)\cdot (x+3)} \)
d) \( \frac{1}{x^2-4} \)
a) Mennyi $(a+b)^7$-nél az $a^2b^5$-es tag együtthatója?
b) Mennyi $(a+2)^7$-nél az $a^2$-es tag együtthatója?
c) Mennyi $(x+3)^8$-nál az $x^6$-os tag együtthatója?
Végezzük el az alábbi műveleteket
a) \( \frac{x-3}{2}+\frac{x+2}{4}-\frac{x-1}{4} \)
b) \( \frac{x+1}{x}-\frac{2x}{x-1} \)
c) \( \frac{4}{x}+\frac{3}{2x} \)
d) \( \frac{x}{4} \cdot \frac{8}{x} \)
e) \( \frac{2x^2}{y^3} : \frac{6x}{y^5} \)
f) \( \frac{a+b}{a} : \frac{a^2-b^2}{a^3} \)