Matematika 1 GTK 0
A kurzus 13 szekcióból áll: Bevezető, Kombinatorika, Elemi valószínűségszámítás és eseményalgebra, Teljes valószínűség tétele és Bayes tétel, Mintavételek típusai, Valószínűségi változó, várható érték, szórás, Lineáris algebra, Függvények, Deriválás, Függvényvizsgálat & szélsőérték-feladatok, Normális eloszlás, Többváltozós deriválás, Integrálás
Bevezető
- -
Utazásról szóló szöveges feladatok.
Kombinatorika
- -
Egy adott n elemű halmaz elemeinek egy ismétlés nélküli permutációján az n különböző elem egy sorba rendezését értjük.
- -
$n$ faktoriálisán az $n$-nél kisebb vagy egyenlő pozitív egész számok szorzatát értjük.
- -
Ismétlés nélküli variációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendje is számít.
- -
Ismétlés nélküli kombinációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendjére nem vagyunk tekintettel.
- -
Ismétléses permutációról akkor beszélünk, ha n elem sorrendjére vagyunk kiváncsiak, de ezen elemek között vannak megegyezőek is.
- -
Ismétléses variációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendje is számít és egy elemet többször is választhatunk.
- -
Ha kör alakban helyezünk el n különböző elemet és azok sorrendjét vizsgáljuk, akkor ciklikus permutációról beszélünk.
Elemi valószínűségszámítás és eseményalgebra
- -
Eseményeknek nevezzük a valószínűségi kísérlet során bekövetkező lehetséges kimeneteleket.
- -
A valószínűség kiszámításának klasszikus modellje az, hogy megszámoljuk hány elemi eseményből áll a vizsgált esemény és ezt elosztjuk az összes elemi esemény számával.
- -
Mikor mondjuk, hogy két esemény egymástól független? Példák független eseményekre.
- -
Mikor kizáró két esemény? Példák kizáró eseményekre.
- -
A feltételes valószínűség. Az A feltéva B valószínűség azt jelenti, hogy mekkora eséllyel következik be az A esemény, ha a B esemény biztosan bekövetkezik..
- -
Események metszetének, uniójának, különbségének és komplementerének valószínűségei.
Teljes valószínűség tétele és Bayes tétel
- -
A teljes valószínűség tétele azt mondja ki, hogy ha ismerjük egy A esemény feltételes valószínűségét egy teljes eseményrendszer valamennyi eseményére, akkor ebből az A esemény valószínűsége kiszámítható.
- -
Mintavételek típusai
- -
Ha a szövegben valószínűségek vannak megadva, akkor a binomiális eloszlást szoktuk használni.
- -
A visszatevées mintavételhez kapcsolódó eloszlás a binomiális eloszlás.
- -
Ha húzásokat vizsgálunk úgy, hogy a kihúzott elemeket nem tesszük vissza, akkor ez egy visszatevés nélküli mintavétel.
- -
A hipergeometriai eloszlás a visszatevés nélküli mintavételhez kapcsolódó eloszlás.
Valószínűségi változó, várható érték, szórás
- -
Folytonosnak nevezzük azokat a valószínűségi változókat, amik folytonos mennyiségeket mérnek, ilyen például az idő, a távolság.
- -
Diszkrétnek nevezzük azokat a valószínűségi változókat, amik megszámlálhatóan sok értéket vesznek fel.
- -
Az X valószínűségi változó eloszlásfüggvénye F(x). F(x)=P(x<X) Vagyis minden x számhoz hozzárendeli annak a valószínűségét, hogy X<x. Nos ez elég izgi..
- -
A valószínűségi változó értékeinek valószínűségekkel súlyozott átlaga. De valójában ez rém egyszerű, nézzünk rá néhány példát.
- -
A szórás azt mutatja meg, hogy a várható érték körül milyen nagy ingadozásra számíthatunk.
- -
A hipergeometriai eloszlás egy diszkrét eloszlás, ahol N darab elem közül kiválasztunk n darab elemet visszatevés nélkül. Az összes elem között K darab selejtes található. Az eloszlás annak valószínűségét írja le, hogy a kiválasztott elemek között éppen k darab selejtes van.
- -
A binomiális eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a valószínűsége p és egymástól függetlenül elvégzünk n darab kísérletet, ahol a kísérletek mindegyikében az esemény vagy bekövetkezik vagy nem. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- -
A Poisson eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a várható előfordulása lambda darab. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- -
Az eltelt idők és a távolságok eloszlása.
Lineáris algebra
- -
- -
Ha egy mátrixot egy számmal szorzunk, akkor a mátrix összes elemét meg kell szorozni a számmal.
- -
Ha egy mátrixot osztunk egy számmal, akkor a mátrix minden elemét osztani kell a számmal.
- -
Két mátrix összeadásakor összeadjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet összeadni, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix kivonásakor kivonjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet kivonni egymásból, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix szorzata akkor létezik, ha a bal oldali mátrix oszlopainak száma megegyezik a jobb oldali mátrix sorainak számával. Az eredménymátrix i-edik sorának j-edik elemét úgy kapjuk, hogy a bal oldali mátrix i-edik sorát skalárisan szorozzuk a jobb oldali mátrix j-edik oszlopával. (Tehát az első elemet az elsővel, a másodikat a másodikkal stb. szorozzuk, majd összeadjuk)
- -
A mátrix összeadás kommutatív és asszociatív.
- -
A mátrixszorzás nem kommutattív, de asszociatív.
- -
A kvadratikus mátrix négyzetes mátrix vagyis ugyanannyi sora van, mint oszlopa.
- -
A diagonális mátrix olyan kvadratikus mátrix, aminek a főátlóján kívüli elemek nullák.
- -
Az egységmátrixok olyan diagonális mátrixok, aminek minden főátló-eleme egy.
- -
Az inverz mátrix egy olyan mátrix, hogy ha azzal szorozzuk az eredeti mátrixot, akkor egységmátrixot kapunk. Ha balról szorozva kapunk egységmátrixot, akkor bal inverz, ha jobbról szorozva, akkor jobb inverz mátrix.
- -
A transzponált a mátrix sorainak és oszlopainak felcserélése.
- -
Azokat a mátrixokat, melyek transzponáltjuk önmaga, szimmetrikus mátrixnak nevezzük.
- -
Vektort egy számmal úgy szorzunk, hogy a vektor minden koordinátáját megszorozzuk a számmal.
- -
Vektort egy számmal úgy osztunk, hogy a vektor minden koordinátáját leosztjuk a számmal.
- -
Két vektort úgy adunk össze, hogy minden egyes koordinátájukat külön-külön össze adjuk.
- -
Két vektort úgy vonunk ki egymásból, hogy minden egyes koordinátájukat külön-külön kivonjuk egymásból.
- -
A skaláris szorzat két vektor közti művelet, ami csinál belőlük egy számot.
- -
Két vektor diadikus szorzata egy mátrix. Lássuk milyen.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak sorait.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak egy oszlopában lévő elemeit.
- -
Ha egy mátrixot megszorzunk jobbról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik oszlopát.
- -
Ha egy mátrixot megszorzunk balról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik sorát.
- -
Egy vektorrendszer akkor lineárisan független, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.
- -
Egy vektorrendszer akkor lineárisan összefüggő, ha a vektorok lineáris kombinációjaként a nullvektor úgy is elő tud állni, hogy nem minden szorzótényező 0.
- -
Vektorok generátor-rendszert alkotnak, ha minden vektortérbeli vektor elő áll az ő lineáris kombinációjuként.
- -
Egy vektorrendszer akkor alkot független rendszert, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.
- -
A bázis független generátorrendszer.
- -
Egy vektorrendszer rangja a benne lévő független vektorok maximális száma
- -
Egy egyenletrendszer együtthatómátrixa az x-ek együtthatóiból álló mátrix.
- -
Az egyenletrendszer megoldásának egy szuper, de koránt sem a legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Ha egy egyenletrendszernek több az ismeretlene, mint ahány egyenlete van, akkor az egyenletrendszernek nincs egyértelmű megoldása.
- -
Ha egy egyenletrendszerben két olyan egyenlet szerepel, ahol az ismeretlenek együtthatói megegyeznek, de más az eredményük, akkor az ellentmondó egyenletrendszer, aminek nincs megoldása.
- -
A szabadságfok a szabadváltozók száma.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
- -
A determináns úgy működik, hogy minden négyzetes mátrixból csinál egy valós számot. Hogy miért, és, hogy hogyan, az mindjárt kiderül.
- -
Egy 2x2-es mátrix determinánsát úgy kapjuk, hogy a bal átló elemeinek szorzatából kivonjuk a jobb átló elemeinek szorzatát.
- -
Egy nem túl jó módszer a determináns kiszámolására.
- -
Egy túl jó módszer a determináns kiszámolására.
- -
Példák mikor nulla egy mátrix determinánsa. Két mátrix szorzatának determinánsa.
- -
Azokat a mátrixokat nevezzük szingulárisnak, amelyek determinánsa nulla.
- -
Azokat a mátrixokat nevezzük regulárisnak, amelyek determinánsa nem nulla.
- -
A Cramer szabály egy újabb módszer az egyenletrendszerek megoldására.
Függvények
- -
Megnézzük, hogy melyik függvény hogyan néz ki, aztán megnézzük a külső és belső függvénytranszformációkat. Eltolás az x tengely mentén, eltolás az y tengely mentén, tükrözés, nyújtás.
- -
A függvény monotonitása lehet növekedő, csökkenő, szigorúan monton növekedő vagy szigorúan monoton csökkenő.
- -
Globális és lokális maximumok és minimumok.
- -
A függvény konvexitása megmondja, hogy a függvény szomorú vagy vidám hangulatban van.
- -
Mikor páros, mikor páratlan vagy éppen egyik sem egy függvény.
- -
Lássuk mik azok a polinomfüggvények, és hogyan kell őket ábrázolni.
Deriválás
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.
- -
Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.
- -
A lánc-szabály az összetett függvények deriválási szabálya.
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
A függvény érintője egy olyan egyenes, amely egy függvényt pontosan egy pontban érint.
Többváltozós deriválás
- -
A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot.
- -
A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
- -
A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
- -
Egy általános módszer, amivel kétváltozós függvények szélsőértékeit és nyeregpontjait lehet meghatározni
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.
- -
Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.
- -
A parciális deriváltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
- -
Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.
- -
Egy függvény akkor implicit, ha $y$ nincs kifejezve, vagyis nem $y=\dots$ alakú.
- -
Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.
Integrálás
- -
Az f(x) függvény primitív függvényének jele F(x) és azt tudja, hogy ha deriváljuk, akkor visszakapjuk f(x)-et. Egy függvény primitív függvényeinek halmazát nevezzük a függvény határozatlan integráljának.
- -
Polinomok integrálása. Törtfüggvény integrálása. Exponenciális függvények integrálása. Trigonometrikus függvények integrálása.
- -
Polinomok, törtfüggvény, exponenciális függvények, trigonometrikus függvények integráljainak lineáris helyettesítései.
- -
A Newton-Leibniz formula egy egyszerűen használható képlet a határozott integrál kiszámításához. Ez a tétel az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.