Matematika 3 OE
A kurzus 10 szekcióból áll: Laplace transzformáció, Differenciálegyenletek, Fourier sorok, Sorok & hatványsorok & Taylor-sorok, Kettős és hármas integrál, Határozott integrálás, Határozatlan integrálás, primitív függvény, Kétváltozós határérték és totális differenciálhatóság, Kétváltozós függvények, Izoklinák
Laplace transzformáció
- -
Hát ez egy elég rémes improprius integrálás, de azért kimondottan hasznos, tehát megér egy megnézést...
- -
Kiszámoljuk pár nevezetes függvény Laplace transzformáltját.
- -
Ez a Laplace transzformált vissza-iránya, ami a differenciálegyenletek megoldásának a végén tartogat izgalmakat.
Differenciálegyenletek
- -
A differenciálegyenletek olyan egyenletek, amiben az ismeretlenek függvények. Az egyenletben ezeknek a függvényeknek a különböző deriváltjai és hatványai szerepelnek.
- -
Azt mondja meg, hogy az ismeretlen függvény maximum hanyadik deriváltja szerepel az egyenletben.
- -
Ha az ismeretlen függvény és deriváltjai csak első fokon szerepelnek a differenciálegyenletben, akkor az egyenlet lineáris.
- -
Olyan differenciálegyenlet, amelyet az egyenlet szétválasztásával és a két rész külön-külön integrálásával lehet megoldani
- -
Egy differenciálegyenlet homogén fokszámú, ha $y=ux$ helyettesítés után minden $x$-es tag kitevője megegyezik.
- -
A differenciálegyenletek második fő típusa, sok helyen nincs benne a tananyagban.
- -
annak olyan egyenletek, amelyek ugyan nem egzaktak, de egy ügyes trükk segítségével egzakttá tehetők. Itt jön a trükk...
- -
Az egyik legfontosabb típus az y'+Py=Q alakú differenciálegyenlet, amelyre egy részletes megoldási tervet adunk.
- -
A konstans variálás módszere egy megoldási módszer az elsőrendű lineáris differenciálegyenletekhez.
- -
Az elsőrendű lineáris állandó együtthatós differenciálegyenlet egy speciális esete a lineáris elsőrendű egyenleteknek. Azért hívják állandó együtthatósnak, mert a $P(x)$ függvény ilyenkor valamilyen konstans, mondjuk $a$.
- -
Ez olyankor van, ha a homogén megoldás és a partikuláris megoldás hasonlít egymásra. Lássuk mit is jelent ez...
- -
A másodrendű lineáris állandó együtthatós homogén differenciálegyenlet általános alakja: $ay'' + by' + cy = 0 $. Megoldásához a karakterisztikus egyenletet használjuk.
- -
A másodrendű lineáris állandó együtthatós inhomogén differenciálegyenlet általános alakja: $ay'' + by' + cy = Q(x) $. A homogén megoldást megkapjuk a karakterisztikus egyenlet segítségével, a partikuláris megoldást pedig a próbafüggvény módszerrel végezzük.
Fourier sorok
- -
A Fourier sorok speciális függvénysorok, amelyeket periodikus függvényekre fejlesztettek ki.
Sorok & hatványsorok & Taylor-sorok
- -
A mértani sor képlete, példák mértani sorokra.
- -
Egy végtelen sor akkor konvergens, ha részletösszegsorozata konvergens.
- -
Ha egy sorozat határértéke nem 0, akkor a belőle képzett sor divergens.
- -
Speciális sorok.
- -
Egy másik fontos konvergenciakritérium, ami az n-edik tag n-edik gyökének segítségével dönti el a konvergenciát.
- -
Egy fontos konvergenciakritérium, amely az n+1-edik tag és az n-edik tag hányadosával dönti el a konvergenciát.
- -
Speciális sorok.
- -
A sorok konvergenciájának megállapítására vonatkozó képletek.
- -
Tört hatványának sorának konvergenciája a hatványkitevőtől függően.
- -
Olyan sorok, amelyek valójában az első és az utolsó tagon kívül semmilyen más tagot nem tartalmaznak.
- -
Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük, ahol $r$ a konvergenciasugár.
- -
A hatványsorok konvergenciájának vizsgálata.
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Az $e^x$, lnx, sinx és cosx függvények Taylor sorai.
- -
Amikor egy függvény x helyen lévő értékét szeretnénk közelíteni egy Taylor polinommal, akkor lesz egy kis hibánk, mivel a polinom nem teljesen követi a függvényt. Ennek a hibának a kifejezésére van a Lagrange-féle maradéktag.
- -
A végtelen sorok egy speciális fajtája.
Kettős és hármas integrál
- -
A kétváltozós függvények határozott integrálja egy test térfogata.
- -
A kettősintegrálok segítségével különböző felületek alatti térfogatokat tudunk kiszámolni. A legegyszerűbb eset, amikor egy téglalapon integrálunk. Ilyenkor az integrálás határai valamilyen számok.
- -
Bizonyos kettősintegrálok kiszámolását megkönnyíti, ha inkább polárkoordinátákat használunk.
- -
A síkbeli polárkoordináták egyik térbeli kiterjesztése - de nem az igazi...
- -
A polárkoordináták háromdimenziós változatát gömbi koordinátáknak nevezzük. A régi x, y, z koordinátákat új gömbi koordinátákkal helyettesítjük.
Határozott integrálás
- -
A Newton-Leibniz formula egy egyszerűen használható képlet a határozott integrál kiszámításához. Ez a tétel az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- -
Egy zárt intervallumon értelmezett függvény akkor Riemann integrálható, ha egyetlen olyan szám létezik, amely bármely alsó közelítő összegénél nagyobb egyenlő, és bármely felső közelítő összegénél kisebb egyenlő.
- -
Végtelenbe nyúló tartományok területének kiszámolása egy fontos függvénnyel.
- -
Forgástestek térfogatának és felszínének képletei határozott integrálással.
Határozatlan integrálás, primitív függvény
- -
Az f(x) függvény primitív függvényének jele F(x) és azt tudja, hogy ha deriváljuk, akkor visszakapjuk f(x)-et. Egy függvény primitív függvényeinek halmazát nevezzük a függvény határozatlan integráljának.
- -
Polinomok integrálása. Törtfüggvény integrálása. Exponenciális függvények integrálása. Trigonometrikus függvények integrálása.
- -
Polinomok, törtfüggvény, exponenciális függvények, trigonometrikus függvények integráljainak lineáris helyettesítései.
- -
Integráláskor a konstans szorzó kivihető.
- -
Összeget külön-külön is integrálhatunk.
- -
Ha a szorzás elvégezhető, akkor végezzük el, és utána integráljunk.
- -
Szorzat integrálásának egy speciális esete, amikor a függvény n-edik hatványon van és meg van szorozva a deriváltjával.
- -
Ezzel a remek módszerrel szorzatokat tudunk integrálni úgy, hogy egy bonyolultabb integrálásból csinálunk egy egyszerűbb integrálást.
- -
Összetett függvényeket általában akkor tudunk integrálni, ha azok meg vannak szorozva a belső függvényük deriváltjával. Van is erre egy remek kis képlet.
- -
Próbálkozzunk a tört földarabolásával és utána integráljunk.
- -
Törtek integrálásának egy speciális esete, amikor a tört számlálója a nevező deriváltja.
- -
A helyettesítéses integrálás lényege, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk majd megoldani a feladatot.
- -
A helyettesítéses integrálás lényege, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk majd megoldani a feladatot.
- -
A helyettesítéses integrálás úgy működik, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk megoldani a feladatot.
A helyettesítéses integrálás egyik legfurcsább esete az $u = \tan{ \frac{x}{2} } $. Olyankor használjuk, ha a törtben $\sin{x}$ és $\cos{x}$ is csak első fokon szerepel.
- -
A racionális törtfüggvények integrálásához a függvényeket parciális törtekre kell bontani, majd a parciális törteket egyesével integrálni.
Kétváltozós határérték és totális differenciálhatóság
- -
Az egyváltozós függvények határértékének epszilon-deltás definícióját átültetjük a kétváltozós esetre.
- -
Hogyan vihető át a deriválás szemléletes jelentése egyváltozós függvényekről kétváltozós függvényekre?
- -
A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
Kétváltozós függvények
- -
A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot.
- -
A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
- -
A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
- -
Egy általános módszer, amivel kétváltozós függvények szélsőértékeit és nyeregpontjait lehet meghatározni
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.
- -
A sík azon pontjainak összességét, amelyekben az $f$ függvény ugyanazt a konstans értéket veszi fel, az $f$ függvény szintvonalának nevezzük.
- -
Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.
- -
A parciális deriváltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
- -
Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.
- -
Egy függvény akkor implicit, ha $y$ nincs kifejezve, vagyis nem $y=\dots$ alakú.
- -
Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.
Izoklinák
- -
Azon pontok halmazát, melyekben a megoldásfüggvények meredeksége egy adott számmal egyenlő, a differenciálegyenlet izoklinájának nevezzük.