F-próba | mateking
 

F-próba

Két sokaság szórásának összehasonlítására irányuló próba, ha mindkét sokaság normális eloszlású. A nullhipotézis $H_0$: $\sigma_1^2 = \sigma_2^2$

\( F = \frac{s_1^2}{s_2^2} \qquad F_{1-p}(v1; v2) = \frac{1}{F_p(v_2;v_1)} \)

Az F-eloszlás két szabadságfoka

$v_1 = n_1-1$ és $v_2=n_2-1$

Bal oldali kritikus érték: $ \frac{1}{F_{1-\alpha}(v_2;v_1)} $

Jobb oldali kritikus érték: $F_{1-\alpha}(v_1; v_2 )$

Kétoldali kritikus érték:

$\frac{1}{F_{1-\frac{\alpha}{2}}(v_2; v_1)}$ és $F_{1-\frac{\alpha}{2}}(v_1 ; v_2)$