- Kettős integrál (csak gazdinfon)
- Parciális deriválás, kétváltozós függvények
- Diff.egyenletek (csak gazdinfon)
- Valszám alapok, kombinatorika
- Teljes valószínűség tétele, Bayes tétel
- Eloszlás, eloszlásfüggvény, sűrűségfüggvény
- Idióta feladatok, amik várhatók az első ZH-ban
- Várható érték és szórás
- Markov és Csebisev egyenlőtlenségek
- Nevezetes diszkrét és folytonos eloszlások
- Kétváltozós eloszlások
- Nem árt, ha tudunk integrálni
Kettős integrál (csak gazdinfon)
Kettősintegrál téglalapon
A kettősintegrálok segítségével különböző felületek alatti térfogatokat tudunk kiszámolni.
A legegyszerűbb eset, amikor egy téglalapon integrálunk. Ilyenkor az integrálás határai valamilyen számok.
\( \int_{a}^{b} \int_{c}^{d} f(x,y) \; dydx = \int_{c}^{d} \int_{a}^{b} f(x,y) \; dxdy \)
A sorrend megcserélhető: mindegy, hogy először az $x$ szerinti határokat adjuk meg és utána az $y$ szerintit vagy fordítva.
Kétváltozós függvények határozott integrálja
A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot. Az értelmezési tartomány minden pontjához hozzárendelve ezt a harmadik, magasság koordinátáit, kirajzolódik az $x, y$ sík felett a függvény, ami egy felület.
A kétváltozós függvények határozott integrálja így egy test térfogata.
\( \int_{c}^{d} \int_{a}^{b} f(x,y) \; dxdy \)
Polárkoordinátás helyettesítés
A polárkoordinátás helyettesítés egy olyan helyettesítés, ami remekül alkalmazkodik a kör tulajdonságaihoz. A dolog lényege, hogy a körben a hagyományos $x$ és $y$ koordináták helyett új koordinátákat vezetünk be.
Az egyik azt mondja meg, hogy milyen távol vagyunk a kör középpontjától és ezt $r$-nek nevezzük.
A másik pedig egy forgásszög, és jele $\theta$.
Az új koordinátákat polárkoordinátáknak nevezzük, a módszert pedig polárkoordinátás helyettesítésnek. A kapcsolat a régi és az új koordináták között a következő:
\( x= r \cos{ \theta} \quad y = r \sin{\theta} \)
A polárkoordinátás helyettesítés elvégzése után az integrálásban drasztikus változások lesznek. A helyettesítést ezzel a képlettel végezzük:
\( \int \int_D f(x,y) \; dydx = \int \int_D f(r \cos{\theta}, r\sin{\theta}) r \; dr d\theta \)
Határozzuk meg az alábbi kettős integrál értékét:
a) $$ \int_{1}^{2} \int_{0}^{1} x^2+xy^4+y^3 \; dxdy $$
b) Határozzuk meg az alábbi kettősintegrál értékét, ahol D az $y=2-x$ egyenes és a koordinátatengelyek által meghatározott derékszögű háromszög!
$$ \iint_D x^2+4y^3 \; dydx $$
a) Határozzuk meg az alábbi kettősintegrál értékét, ahol D az $y=2-x$ és $y=\frac{1}{2}(x-2)^2$ által közrefogott tartomány!
$$ \iint_D x+4y \; dydx $$
b) Határozzuk meg az alábbi kettősintegrál értékét, ahol D az $y=\sqrt{x}$ és $y=x^2$ által közrefogott tartomány!
$$ \iint_D xy \; dydx $$
c) Határozzuk meg az alábbi kettősintegrál értékét, ahol D az $y=\sqrt{x}$ és $y=x^2$ által közrefogott tartomány!
$$ \iint_D \frac{y}{\sqrt{x}} \; dxdy $$
Oldjuk meg az alábbi integrált.
$$ \int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} 5-x^2-y^2 \; dydx $$
Oldjuk meg az alábbi integrált.
$$ \int_{-1}^{1} \int_{-1}^{1} 3x-2y^3+2 \; dxdy $$
Oldjuk meg az alábbi integrált.
$$ \int_{0}^{1} \int_{0}^{1} \frac{y}{(xy+2)^2} \; dxdy $$
Oldjuk meg az alábbi integrált.
$$ \int_{0}^{1} \int_{0}^{2} \left( y+e^{3x}-1 \right) \; dydx $$
Oldjuk meg az alábbi integrált.
$$ \int_{0}^{1} \int_{0}^{1} \frac{6y}{ \left( 2x+3y^2+1 \right)^2 } \; dxdy $$
Oldjuk meg az alábbi integrált.
$$ \int_{0}^{1} \int_{0}^{2} \left( x^2-1 \right) \cdot e^{-3y} \; dydx $$
Határozzuk meg az alábbi kettősintegrál értékét, ahol T az A(0,0), B(6,0), C(3,4), és a D(1,4) pontok által meghatározott trapéz!
$$ \iint_T y^2 \; dydx $$
Határozzuk meg az alábbi kettősintegrál értékét, ahol T az A(0,0), B(5,0), C(4,6), és a D(3,6) pontok által meghatározott trapéz!
$$ \iint_T e^{6x+y} \; dydx $$
Határozzuk meg az alábbi kettősintegrál értékét, ahol T az A(2,0), B(4,0), C(0,4), és a D(6,4) pontok által meghatározott trapéz!
$$ \iint_T x+y^2 \; dydx $$
Oldjuk meg az alábbi integrált.
$$ \int_{0}^{1} \int_{y^2}^{1} y \sin{x^2} \; dxdy $$
Oldjuk meg az alábbi integrált.
$$ \int_{0}^{16} \int_{ \frac{ \sqrt{y}}{2}}^{2} \sqrt[5]{1+x^3} \; dxdy $$
Az egyváltozós függvények úgy működnek, hogy egy valós számhoz rendelnek hozzá egy másik valós számot.
A függvény grafikonja egy vonal.
Határozott integrálja a-tól b-ig pedig egy terület.
A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot.
Az értelmezési tartomány minden pontjához hozzárendelve ezt a harmadik, magasság koordinátát, kirajzolódik az x,y sík felett a függvény, ami egy felület.
A kétváltozós függvények határozott integrálja egy test térfogata.
Kezdjük a legegyszerűbb esettel, amikor egy téglalap alakú tartományon integrálunk.
Az x tengely szerint a-tól b-ig, az y szerint c-től d-ig.
Mindegy, hogy az y szerinti határokat írjuk előbb és az x szerintit később,
vagy fordítva.
Egyedül arra kell vigyáznunk, hogy ez a kettősintegrál
ilyen hagyma szerkezetű. Vannak külső és belső rétegei.
Amikor az y szerinti határokkal kezdünk, akkor a dy a végén van.
Persze kezdhetjük az x szerinti határokkal is, ilyenkor a dx van a végén.
Ha például ki szeretnénk számolni ezt a kettősintegrált, akkor írhatjuk úgy is, hogy az x szerinti határok vannak elöl…
és írhatjuk úgy is, hogy az y szerintiek.
A számolást viszont mindig belülről kifele kell elkezdeni. Először elintézzük a belsejét – most akkor ezek szerint x szerint.
Úgy kell x szerit integrálni, hogy az x-es tagokat integráljuk, y-t pedig konstansnak tekintjük.
x-et integráljuk, pedig csak konstans szorzónak számít.
És is konstans szorzónak számít.
Most, hogy ez megvan, behelyettesítjük ezeket a számokat.
De nem mindegy, hogy x vagy y helyére. Nos, x szerint integráltunk, úgyhogy x helyére.
Hát ez megvolna, most rátérünk a külső integrálásra.
Ezúttal y szerint.
Végül behelyettesítünk.
y szerint integráltunk, ezért y helyére. Nem mintha lenne más választásunk.
Hát ez kész.
Most nézzünk meg mi van akkor, ha nem egy téglalap felett akarunk integrálni, hanem mondjuk egy háromszög felett.
Ezek a térhatású rajzok csodálatosak…
de a vizuális élvezeteken kívül másra nem igazán használhatóak.
Sokkal jobban járunk, ha készítünk egy felülnézeti ábrát.
x szerint 0-tól 2-ig kell integrálnunk.
Ha y szerint is 0-tól 2-ig integrálunk, nos akkor egy téglalapot kapunk…
Az nem túl jó, mert mi a háromszögön szeretnénk integrálni.
A háromszöget úgy kapjuk meg, ha az y szerinti határok 0, és .
És most kezdjünk el integrálni.
A külső integrálás határai soha ne tartalmazzanak x-et vagy y-t.
Szerencsére a sorrendet bármikor megcserélhetjük.
Mindig a belső integrálással kezdünk.
Ez most y szerinti, úgyhogy az y-okat integráljuk,
x meg olyan, mintha konstans lenne.
Aztán y helyére behelyettesítünk.
És ezt integráljuk x szerint.
A folytatás még izgalmasabb lesz…
A kettősintegrálok segítségével különböző felületek alatti térfogatokat tudunk kiszámolni.
A legegyszerűbb eset, amikor egy téglalapon integrálunk. Ilyenkor az integrálás határai valamilyen számok.
A sorrend megcserélhető: mindegy, hogy először az x szerinti határokat adjuk meg és utána az y szerintit vagy fordítva.
A helyzet akkor válik izgalmasabbá, ha nem téglalapon integrálunk, hanem mondjuk ezen a háromszög alakú tartományon.
Ilyenkor érdemes felülnézeti rajzot készíteni, hogy jobban lássuk miről is van szó.
Az x szerinti határok rajzunkon most 0-tól 2-ig tartanak.
Az y szerinti határok viszont nem 0-tól 2-ig, mert akkor egy téglalapot kapunk…
Úgy lesz ebből háromszög, ha az y szerinti határok 0, és .
Vagyis az y szerinti határ egy függvény.
Esetünkben csak a felső határ függvény, de miért is ne lehetne az alsó határ is függvény.
Nos, legyen mondjuk
Integráljuk ezen az tartományon mondjuk azt a függvényt, hogy
Mindig a belső integrálással kezdünk.
Először tehát y szerint integrálunk.
Ilyenkor x olyan, mintha konstans lenne.
És most jöhet az x szerinti integrálás.
Csak előbb egy kicsit összevonunk.
Nem is olyan kicsit…
Hát ez nem volt túl kellemes.
Nézzünk meg egy másikat is, hátha az barátságosabb lesz.
Integráljuk a D tartományon az függvényt.
Előfordulhat, hogy a határoló függvény csak y-nal írható le.
Itt van például ez a tartomány.
Megpróbálhatnánk a határoló függvényt y-ra rendezni, de kár fáradozni vele.
Sok felesleges munkánk adódna ugyanis:
Szóval maradjunk inkább az eredeti függvénynél,
vállalva azt a kis kellemetlenséget, hogy most az y szerinti határok lesznek konkrét számok.
Nos integráljuk ezen a tartományon az függvényt.
A kettősintegrálok segítségével különböző felületek alatti térfogatokat tudunk kiszámolni.
A helyzet akkor válik izgalmassá, ha egy olyan tartományon integrálunk, amit egyváltozós függvények határolnak.
Itt van például ez. Az x szerinti határok legyenek és ,
az y szerinti határok pedig két függvény, és .
Ezek a függvények lehetnek például valamilyen parabolák…
vagy éppen olyan függvények, amik pont egy kört rajzolnak ki.
Egy 2 sugarú kört.
Lássuk csak, a kör egyenlete:
És ha , akkor
Ha szeretnénk megtudni, hogy mik lehetnek a határoló függvények, nos akkor ebből ki kell fejeznünk y-t.
Integráljuk ezen a körön az függvényt.
A helyzet nem tűnik túl bíztatónak.
Az alapvető probléma ezzel az integrálással az, hogy nehéz. Azért nehéz, mert ronda gyökös kifejezések vannak benne.
A gyökös kifejezések pedig a kör miatt vannak.
Nos, éppen ilyen körös esetekre van egy remek módszer, ami hihetetlenül megkönnyíti ezt az integrálást.
Ez egyfajta helyettesítés, ami remekül alkalmazkodik a kör tulajdonságaihoz.
A dolog lényege, hogy a körben a hagyományos x és y koordináták helyett új koordinátákat vezetünk be.
Az egyik azt mondja meg, hogy milyen távol vagyunk a kör középpontjától és ezt r-nek nevezzük.
A másik pedig egy forgásszög, és jele… nos hát a jele théta, amit így írnak:
Az új koordinátákat polárkoordinátáknak nevezzük, a módszert pedig polárkoordinátás helyettesítésnek.
A kapcsolat a régi és az új koordináták között a következő:
A kör összes pontját úgy kapjuk meg, ha befutja a teljes kört,
0-tól egészen –ig…
az r pedig befutja a 0-tól 2-ig terjedő intervallumot.
A polárkoordinátás helyettesítés elvégzése után az integrálásban drasztikus változások lesznek.
A helyettesítést ezzel a képlettel végezzük:
A polárkoordinátás helyettesítésnek köszönhetően a ronda gyökös kifejezések eltűntek, és ami maradt, az életünk legegyszerűbb integrálása
Főleg, ha tudjuk, hogy
Sőt, a polárkoordinátás helyettesítés még ennél is többet tud.
Próbáljuk meg ugyanezt a függvényt integrálni egy olyan tartományon, ami egy lukas belsejű kör, egy körgyűrű.
Ráadásul mondjuk egy fél körgyűrű.
A polárkoordinátás helyettesítés megdöbbentően leegyszerűsíti az ilyen első ránézésre igencsak komplikáltnak tűnő helyzeteket.
Mindössze annyit kell tennünk, hogy megadjuk a szöget,
és a sugarat.
És már kész is van.
A polárkoordináták lényege, hogy az x és y koordinátákat új koordinátákra cseréljük le.
Azokban az esetekben ugyanis, amikor körök, gömbök vagy hengerek bukkannak fel, nos olyankor nem bizonyul kifizetődőnek az a fajta szögletes mentalitás, hogy x koordináta és y koordináta.
Egy olyan koordinátázást érdemes bevezetni, ami jobban alkalmazkodik a kör tulajdonságaihoz.
Egy kör belsejében a legfontosabb jellemzők a középponttól való távolság és a forgásszög.
Az egyik koordináta ezért azt mondja meg, hogy milyen távol vagyunk a kör középpontjától és ezt r-nek nevezzük.
A másik pedig egy forgásszög, és jele… nos hát a jele théta, amit így írnak:
A kapcsolat a régi és az új koordináták között a következő:
Egy R sugarú kör összes pontját úgy kapjuk meg, hogy befutja a teljes kört,
0-tól egészen –ig…
az r pedig befutja a 0-tól R-ig terjedő intervallumot.
A polárkoordinátás helyettesítés egyik haszna, hogy megdöbbentően leegyszerűsíti azokat a bonyolult integrálásokat, amiket körön vagy valamilyen köralakú alakzaton végzünk.
A helyettesítést a következő képlet segítségével végezzük el:
Lássunk néhány ilyen esetet.
Integráljuk a tartományon a következő függvényt:
Lássuk csak, hogyan is néz ki ez a tartomány.
A konstansok határozott integrálása nagyon egyszerű:
Próbáljuk meg ugyanezt a függvényt integrálni ezen a félkörön.
Ilyenkor látszik igazán, milyen ügyesen a körre vannak szabva a polárkoordináták.
A szokásos x és y koordinátákkal borzalmas lenne ez az integrálás.
De így csak annyit kell tennünk, hogy a szögeket átírjuk,
és már kész is.
Itt jön aztán egy másik.
Integráljuk a D tartományon az f(x,y) függvényt:
A kettősintegrálok segítségével különböző felületek alatti térfogatokat tudunk kiszámolni.
A legegyszerűbb eset, amikor egy téglalapon integrálunk. Ilyenkor az integrálás határai valamilyen számok.
A sorrend megcserélhető: mindegy, hogy először az x szerinti határokat adjuk meg és utána az y szerintit vagy fordítva.
A helyzet akkor válik izgalmasabbá, ha nem téglalapon integrálunk, hanem mondjuk ezen a háromszög alakú tartományon.
Ilyenkor érdemes felülnézeti rajzot készíteni, hogy jobban lássuk miről is van szó.
Az x szerinti határok rajzunkon most 0-tól 2-ig tartanak.
Az y szerinti határok viszont nem 0-tól 2-ig, mert akkor egy téglalapot kapunk…
Úgy lesz ebből háromszög, ha az y szerinti határok 0, és .
Vagyis az y szerinti határ egy függvény.
Esetünkben csak a felső határ függvény, de miért is ne lehetne az alsó határ is függvény.
Nos, legyen mondjuk
Integráljuk ezen az tartományon mondjuk azt a függvényt, hogy
Mindig a belső integrálással kezdünk.
Először tehát y szerint integrálunk.
Ilyenkor x olyan, mintha konstans lenne.
És most jöhet az x szerinti integrálás.
Csak előbb egy kicsit összevonunk.
Nem is olyan kicsit…
Hát ez nem volt túl kellemes.
Nézzünk meg egy másikat is, hátha az barátságosabb lesz.
Integráljuk a D tartományon az függvényt.
Előfordulhat, hogy a határoló függvény csak y-nal írható le.
Itt van például ez a tartomány.
Megpróbálhatnánk a határoló függvényt y-ra rendezni, de kár fáradozni vele.
Sok felesleges munkánk adódna ugyanis:
Szóval maradjunk inkább az eredeti függvénynél,
vállalva azt a kis kellemetlenséget, hogy most az y szerinti határok lesznek konkrét számok.
Nos integráljuk ezen a tartományon az függvényt.
A kettősintegrálok segítségével különböző felületek alatti térfogatokat tudunk kiszámolni.
A helyzet akkor válik izgalmassá, ha egy olyan tartományon integrálunk, amit egyváltozós függvények határolnak.
Itt van például ez. Az x szerinti határok legyenek és ,
az y szerinti határok pedig két függvény, és .
Ezek a függvények lehetnek például valamilyen parabolák…
vagy éppen olyan függvények, amik pont egy kört rajzolnak ki.
Egy 2 sugarú kört.
Lássuk csak, a kör egyenlete:
És ha , akkor
Ha szeretnénk megtudni, hogy mik lehetnek a határoló függvények, nos akkor ebből ki kell fejeznünk y-t.
Integráljuk ezen a körön az függvényt.
A helyzet nem tűnik túl bíztatónak.
Az alapvető probléma ezzel az integrálással az, hogy nehéz. Azért nehéz, mert ronda gyökös kifejezések vannak benne.
A gyökös kifejezések pedig a kör miatt vannak.
Nos, éppen ilyen körös esetekre van egy remek módszer, ami hihetetlenül megkönnyíti ezt az integrálást.
Ez egyfajta helyettesítés, ami remekül alkalmazkodik a kör tulajdonságaihoz.
A dolog lényege, hogy a körben a hagyományos x és y koordináták helyett új koordinátákat vezetünk be.
Az egyik azt mondja meg, hogy milyen távol vagyunk a kör középpontjától és ezt r-nek nevezzük.
A másik pedig egy forgásszög, és jele… nos hát a jele théta, amit így írnak:
Az új koordinátákat polárkoordinátáknak nevezzük, a módszert pedig polárkoordinátás helyettesítésnek.
A kapcsolat a régi és az új koordináták között a következő:
A kör összes pontját úgy kapjuk meg, ha befutja a teljes kört,
0-tól egészen –ig…
az r pedig befutja a 0-tól 2-ig terjedő intervallumot.
A polárkoordinátás helyettesítés elvégzése után az integrálásban drasztikus változások lesznek.
A helyettesítést ezzel a képlettel végezzük:
A polárkoordinátás helyettesítésnek köszönhetően a ronda gyökös kifejezések eltűntek, és ami maradt, az életünk legegyszerűbb integrálása
Főleg, ha tudjuk, hogy
Sőt, a polárkoordinátás helyettesítés még ennél is többet tud.
Próbáljuk meg ugyanezt a függvényt integrálni egy olyan tartományon, ami egy lukas belsejű kör, egy körgyűrű.
Ráadásul mondjuk egy fél körgyűrű.
A polárkoordinátás helyettesítés megdöbbentően leegyszerűsíti az ilyen első ránézésre igencsak komplikáltnak tűnő helyzeteket.
Mindössze annyit kell tennünk, hogy megadjuk a szöget,
és a sugarat.
És már kész is van.
A polárkoordináták lényege, hogy az x és y koordinátákat új koordinátákra cseréljük le.
Azokban az esetekben ugyanis, amikor körök, gömbök vagy hengerek bukkannak fel, nos olyankor nem bizonyul kifizetődőnek az a fajta szögletes mentalitás, hogy x koordináta és y koordináta.
Egy olyan koordinátázást érdemes bevezetni, ami jobban alkalmazkodik a kör tulajdonságaihoz.
Egy kör belsejében a legfontosabb jellemzők a középponttól való távolság és a forgásszög.
Az egyik koordináta ezért azt mondja meg, hogy milyen távol vagyunk a kör középpontjától és ezt r-nek nevezzük.
A másik pedig egy forgásszög, és jele… nos hát a jele théta, amit így írnak:
A kapcsolat a régi és az új koordináták között a következő:
Egy R sugarú kör összes pontját úgy kapjuk meg, hogy befutja a teljes kört,
0-tól egészen –ig…
az r pedig befutja a 0-tól R-ig terjedő intervallumot.
A polárkoordinátás helyettesítés egyik haszna, hogy megdöbbentően leegyszerűsíti azokat a bonyolult integrálásokat, amiket körön vagy valamilyen köralakú alakzaton végzünk.
A helyettesítést a következő képlet segítségével végezzük el:
Lássunk néhány ilyen esetet.
Integráljuk a tartományon a következő függvényt:
Lássuk csak, hogyan is néz ki ez a tartomány.
A konstansok határozott integrálása nagyon egyszerű:
Próbáljuk meg ugyanezt a függvényt integrálni ezen a félkörön.
Ilyenkor látszik igazán, milyen ügyesen a körre vannak szabva a polárkoordináták.
A szokásos x és y koordinátákkal borzalmas lenne ez az integrálás.
De így csak annyit kell tennünk, hogy a szögeket átírjuk,
és már kész is.
Itt jön aztán egy másik.
Integráljuk a D tartományon az f(x,y) függvényt: