- Halmazok, egyenletek, azonosságok
- Trigonometria, komplex számok, polinomok
- Vektorok, mátrixok, determináns
- Függvények, függvények ábrázolása
- Összetett függvény, inverz függvény
- Sorozatok határértéke
- Határérték epszilonos definíciója, monotonitás
- Végtelen sorok
- Függvények határértéke és folytonossága
- Deriválás
- Differenciálhatóság, az érintő egyenlete
- L'Hospital szabály
- Teljes függvényvizsgálat
- Határozatlan integrálás
- Határozott integrálás és alkalmazásai
- Racionális törtfüggvények integrálása
Differenciálhatóság, az érintő egyenlete
Differenciahányados
A deriválás lényege, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig úgy, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Az érintő meredekségét pedig úgy kapjuk meg, hogy veszünk rengeteg szelőt, amelyek egyre jobban "rásimulnak" az érintőre, és így a szelők meredekségének a határértéke lesz az érintő meredeksége. A szelők meredekségét írja le a differenciahányados:
\( \frac{ f(x) - f(x_0) }{ x -x_0} \)
Differenciálhányados
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados:
\( m= \lim_{x \to x_0}{ \frac{ f(x)-f(x_0)}{x-x_0}} \)
Ezt nevezzük a függvény $x_0$ pontban vett deriváltjának. Hogyha a derivált ebben a pontban pozitív, az azt jelenti, hogy pozitív meredekségű érintő húzható a függvényhez. Vagyis a függvény ebben a pontban növekszik. Ha pedig a derivált ebben a pontban negatív, akkor negatív meredekségű érintő húzható a függvényhez, és így a függvény csökken. A derivált tehát a függvény növekedési és csökkenési szakaszait képes nekünk megmutatni, és hatalmas szerepe van a függvények viselkedésének vizsgálatánál.
Differenciahányados
A deriválás lényege, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig úgy, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Az érintő meredekségét pedig úgy kapjuk meg, hogy veszünk rengeteg szelőt, amelyek egyre jobban "rásimulnak" az érintőre, és így a szelők meredekségének a határértéke lesz az érintő meredeksége. A szelők meredekségét írja le a differenciahányados:
\( \frac{ f(x) - f(x_0) }{ x -x_0} \)
Differenciálhányados
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados:
\( m= \lim_{x \to x_0}{ \frac{ f(x)-f(x_0)}{x-x_0}} \)
Ezt nevezzük a függvény $x_0$ pontban vett deriváltjának. Hogyha a derivált ebben a pontban pozitív, az azt jelenti, hogy pozitív meredekségű érintő húzható a függvényhez. Vagyis a függvény ebben a pontban növekszik. Ha pedig a derivált ebben a pontban negatív, akkor negatív meredekségű érintő húzható a függvényhez, és így a függvény csökken. A derivált tehát a függvény növekedési és csökkenési szakaszait képes nekünk megmutatni, és hatalmas szerepe van a függvények viselkedésének vizsgálatánál.
Nevezetes függvények deriváltjai
\( (c)'=0 \quad \left( x^n \right)' = n x^{n-1} \quad \left( e^x \right)' = e^x \quad \left( a^x \right)' = a^x \ln{a} \)
\( ( \ln{x} )' = \frac{1}{x} \quad ( \log_a{x} )' = \frac{1}{x} \frac{1}{\ln{a}} \quad ( \sin{x} )' = \cos{x} \quad ( \cos{x} )' = - \sin{x} \)
\( ( \tan{x} )' = \frac{1}{\cos^2{x} } \quad ( \arcsin{x} )' = \frac{1}{\sqrt{1-x^2}} \quad ( \arccos{x} )' = \frac{-1}{\sqrt{1-x^2}} \quad (\arctan{x})' = \frac{1}{1+x^2} \)
Deriválási szabályok
$f$ és $g$ deriválható függvények, és $c$ valós szám esetén a deriválási szabályok:
\( (cf)' = cf' \quad \left( \frac{f}{c} \right)' = \frac{f'}{c} \)
\( (f+g)' = f' + g' \)
\( (fg)' = f'g + fg' \)
\( \left( \frac{f}{g} \right)' = \frac{ f'g - fg'}{g^2} \)
\( \left( \frac{c}{f} \right)' = \frac{-cf'}{f^2} \)
\( \left( f \left( g(x) \right) \right)' = f' \left( g(x) \right) g'(x) \)
A deriválási szabályok megmutatják, hogyan kell egy függvény konstans-szorosát deriválni, hogyan kell két függvény összegét vagy épp különbségét deriválni, mi lesz két függvény szorzatának a deriváltja, mi lesz két függvény hányadosának a deriváltja. Van két extra deriválási szabály is, amit érdemes tudni, az egyik amikor egy függvényt osztunk egy számmal, a másik pedig amikor egy számot osztunk el egy függvénnyel. Mindkét esetben törtet deriválunk, de nem kell a trötek deriválására használt eléggé komplikált képletet használni, hanem ezekre az esetekre vannak egyszerűbb képletek. Végül pedig jön az összetett függvények deriválási szabályavagyis a lánc-szabály.
Az érintő egyenlete
A derivált geometriai jelentése a függvény grafikonjához húzott érintő meredeksége.
Az érintő egyenlete:
\( f(x) = f'(x_0) (x-x_0) + f(x_0) \)
Oldjuk meg az alábbi feladatokat:
a) Mi lesz az \( f(x)=x^2+5x-7 \) függvények a deriváltja az \( x_0=2 \)-ben?
b) Mi lesz az \( f(x)=x^3+2x^2-3x-1 \) függvények a deriváltja az \( x_0=1 \)-ben?
c) Mi lesz az \( f(x)=-4x^2+5x \) függvények a deriváltja az \( x_0=-3 \)-ban?
Deriváljuk az alábbi függvényeket.
a) \( \left( 5\cdot x^3 \right)' = \; ? \)
b) \( \left( \frac{x^5}{7} \right)' = \; ? \)
c) \( \left( x^2+\ln{x} \right)' = \; ? \)
d) \( \left( x^3 \cdot \ln{x} \right)' = \; ? \)
e) \( \left( \frac{x^2}{\ln{x}} \right)' = \; ? \)
f) \( \left( \frac{5}{x^3+2} \right)' = \; ? \)
Oldjuk meg az alábbi feladatokat:
a) Deriválható-e az alábbi függvény az \( x_0 = 2 \) pontban?
\( f(x)= \begin{cases} 9-x^2, &\text{ha } x<2 \\ 3x-1, &\text{ha } x \geq 2 \end{cases} \)
b) Deriválható-e az alábbi függvény az \( x_0 = -3 \) pontban?
\( f(x)= \begin{cases} x^4-4x^2, &\text{ha } x<-3 \\ \sqrt{x^2+16}, &\text{ha } x \geq -3 \end{cases} \)
c) Deriválható-e az alábbi függvény az \( x_0 = 2 \) pontban?
\( f(x)= \begin{cases} 4x^2-7e^{x-2}-9, &\text{ha } x<2 \\ \ln{ \left( x^3-3x-1 \right)}, &\text{ha } x \geq 2 \end{cases} \)
Oldjuk meg az alábbi feladatokat:
a) Milyen \( A \) paraméter esetén deriválható az alábbi függvény az \( x_0 = 1 \) pontban?
\( f(x)= \begin{cases} \sqrt[4]{\ln{x}+6x+10}, &\text{ha } x>1 \\ \frac{A}{x^2+4}, &\text{ha } x \geq 1 \end{cases} \)
b) Megadható-e az \( A \) és \( B \) paraméter úgy, hogy ez a függvény deriválható legyen az \( x_0 = -2 \) pontban?
\( f(x)= \begin{cases} Ax^4+4x, &\text{ha } x \leq -2 \\ x^3+Bx^2, &\text{ha } x > -2 \end{cases} \)
Oldjuk meg az alábbi feladatokat:
a) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2x^3+1 \) függvényt az \( y_0=55 \) pontban érinti.
b) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=x^2-x+4 \) függvényt egy olyan pontban érinti, aminek \( x \) koordinátája negatív, \( y \) koordinátája 24.
c) Keressük annak az érintőnek az egyenletét, amely érinti az \( f(x)=x^4+5x+12 \) függvényt és párhuzamos az \( y=-27x+1 \) egyenessel.
d) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2e^{x-4}+5 \) függvényt az \( y_0=7 \) pontban érinti.
Oldjuk meg az alábbi feladatokat:
a) Deriválható-e ez a függvény az \( x_0 = 3 \) és \( x_1 = 6 \) pontokban?
\( f(x)=\left| x^2-6x \right| \)
b) Deriválható-e ez a függvény az \( x_0 = 0 \) és \( x_1 = 6 \) pontokban?
\( f(x)=x \cdot \left| x^2-6x \right| \)
Oldjuk meg az alábbi feladatokat:
a) Deriválható-e ez a függvény az \( x_0 = 0 \) pontban?
\( f(x)=\left| x \right| \cdot \sin{x} \)
b) Milyen \( A \) paraméter esetén deriválható ez a függvény az \( x_0=0 \) pontban?
\( f(x)= \begin{cases} e^{Ax^2-x}, &\text{ha } x<0 \\ \cos{(x^2+x)}, &\text{ha } x \geq 0 \end{cases} \)
Mely pontban, vagy pontokban párhuzamos egymással az $f(x)=(x-3)^2+7$ és a $g(x)=3\ln{x}$ függvények érintője?
Adjuk meg az $f(x)=(x+2)e^x$ függvény esetén az alábbiakat:
a) paritását
b) érintő egyenes egyenletét $x_0=-3$ helyen.
Van itt ez a függvény: $f(x)=2x \cdot \ln{x} $
És keressük az érintő egyenletét az $x_0 = \sqrt{e}$ pontban.
Van itt ez a függvény: $f(x)=(x-2)e^{2x-4}$
És adjuk meg az érintő egyenletét a függvény zérushelyén.
Van itt egy függvény.
Ha néhány pontjában érintőt húzunk a függvényhez,
akkor az látszik, hogy ahol az érintő fölfelé megy, ott a függvény növekszik,
ahol az érintő lefelé megy, ott a függvény csökken.
Ott pedig, ahol az érintő vízszintesen megy, a függvénynek minimuma van,
de tulajdonképpen lehet maximuma is.
Mi az a deriválás, Deriváltak kiszámolása, Differencia hányados, Differenciál hányados, Alapderiváltak, Deriválási szabályok, Összeg deriváltja, Szorzat deriváltja, Hányados deriváltja, Összetett függvény deriváltja, A láncszabály, Deriválás feladatok megoldásokkal.
Az érintő tehát valahogy együtt mozog a függvénnyel, így ha ki tudjuk számolni a függvény érintőinek a meredekségét, akkor meg tudjuk mondani, hogy mit csinál
maga a függvény.
Számoljuk ki mondjuk ennek az érintőnek a meredekségét.
A meredekség azt jelenti, hogy ha egyet lépünk előre, akkor mennyit lépünk fölfelé.
A meredekség kiszámolásához segítségül hívunk egy másik pontot.
Először annak az egyenesnek számoljuk ki a meredekségét,
ami ezen a két ponton megy át.
Lássuk mekkora ennek az egyenesnek a meredeksége!
amennyit fölfele megy
amennyit előre megy
Ezt a meredekséget differencia hányadosnak nevezzük.
A szelő meredeksége a
differenciahányados:
Ez igazán remek, de eredetileg az érintő meredekségének kiszámolása volt a cél.
Nos úgy lesz ebből érintő, hogy -et elkezdjük közelíteni felé, és így a szelők egyre jobban közelítenek az érintőhöz.
Az érintő meredeksége tehát a szelők meredekségének a határértéke.
Ezt differenciál hányadosnak nevezzük, ez a derivált.
Az érintő meredeksége
a differenciál hányados:
az pontban a derivált
Egy függvény deriváltja tehát azt mondja meg, hogy milyen meredek érintő húzható a függvény grafikonjához.
Az függvény deriváltjának jelölésére az van forgalomban.
Lássuk melyik függvénynek mi a deriváltja!
A konstans függvények deriváltja nulla.
Például egy konstans függvény és
A hatványfüggvények deriváltja
például deriváltja
Ha úgy adódik, hogy ilyen gyökös izéket kell deriválni, azt ugyanígy kell:
és a derivált
Az egy biztos pont az életünkben, ugyanis deriváltja önmaga:
Az deriváltja kicsit rondább:
Itt van például ez, hogy
nos ennek a deriváltja nem mert itt x a kitevőben van.
és ez a bizonyos egy konkrét szám, nevezetesen e alapú logaritmus 5, de aggodalomra semmi ok, a számológéppel ki tudjuk számolni:
Ez igazán remek, de maradjunk inkább annál, hogy .
Aztán itt van az emlegetett deriváltja:
Az egyéb logaritmusok deriváltja pedig
például 10-es alapú logaritmus, így hát a=10 és a derivált:
Aztán itt jönnek a trigonometrikus függvények.
A szinusz deriváltja koszinusz, a koszinusz deriváltja mínusz szinusz.
A tangens deriváltja
na az már jóval barátságtalanabb, a többiről nem is beszélve.
Most pedig jöjjenek a deriválási szabályok!
És itt jön a legviccesebb, az összetett függvény deriválási szabálya.
Van itt egy függvény, ez még nem összetett.
Akkor válik összetett függvénnyé, ha x helyett mondjuk az van, hogy
Na ez már összetett függvény, és a szabály szerint úgy kell deriválni, hogy először deriváljuk a külső függvényt, ami az, hogy
aztán megszorozzuk a belső függvény deriváltjával.
Vagy itt van egy másik.
Ez nem összetett függvén, hanem egy ártatlan kis összeg.
De ha ez az egész a negyediken van,
na akkor már összetett függvény.
A külső függvény itt az, hogy
aminek a deriváltja, ahogyan lenni szokott
aztán itt is szorozni kell még a belső függvény deriváltjával.
És itt van például ez.
A külső függvény deriváltja
Most pedig elérkezett az idő, hogy szerencsét próbáljunk
a deriválás feladatokkal.