Vannak az $A$ és $B$ halmazok.
Az $A$ és $B$ halmazok uniója: Azon elemek halmaza, amelyek legalább az egyik halmazban benne vannak.
Jele: $A \cup B$
Az $A$ és $B$ halmazok metszete: Azon elemek halmaza, amelyek mindkét halmazban benne vannak.
Jele: $A \cap B$
Az $A$ és $B$ halmazok különbsége: Azon elemek halmaza, amelyek az $A$ halmazba benne vannak, de a $B$ halmazba nem.
Jele: $A \setminus B$
Az $A$ halmaz komplementere a $H$ alaphalmazon nézve: Az alaphalmaz azon elemeinek halmza, amelyek nincsenek benne az $A$-ban.
Jele: $ \overline{A}$
Az A és B halmazok uniója: Azon elemek halmaza, amelyek legalább az egyik halmazban benne vannak. Az A és B halmazok metszete: Azon elemek halmaza, amelyek mindkét halmazban benne vannak. Az A és B halmazok különbsége: Azon elemek halmaza, amelyek az A halmazba benne vannak, de a B halmazba nem. Az A halmaz komplementere a H alaphalmazon nézve: Az alaphalmaz azon elemeinek halmza, amelyek nincsenek benne az A-ban.
Az $A$ halmaz legyen a $[2,6]$ zárt intervallum, a $B$ halmaz pedig az $]1,4[$ nyílt intervallum.
Határozzuk meg ezeket:
\( A \cap B \quad A \cup B \quad A \setminus B \)