Homogén fokszámú differenciálegyenlet

Egy differenciálegyenlet homogén fokszámú, ha $y=ux$ helyettesítés után minden $x$-es tag kitevője megegyezik.

A homogén fokszámú differenciálegyenletek megoldásának menete a következő:

Először elvégezzük az $y(x)=x u(x)$ (röviden $y=xu$) helyettesítést, ekkor $dy=u\cdot dx = x \cdot du$.

Így ez az egyenlet már szeparábilis, úgyhogy jöhet a szétválasztás.

Megoldjuk a szeparábilis egyenletet, ahol $y$ helyett most $u$-ra hajtunk. És amikor $u$ már megvan, visszacsináljuk $y$-ra.