Ha $A$ és $B$ olyan mátrixok, hogy létezik egy $C$ mátrix úgy, hogy
\( A = C^{-1} \cdot B \cdot C \)
akkor a két mátrix egymáshoz hasonló.
Az A és B mátrixok hasonlók, ha létezik egy C mátrix, amivel ha jobbról szorozzuk a B-t, balról pedig a C inverzével szorozzuk, akkor ennek eredménye A.
Döntsük el, hogy az alábbi mátrixok közül melyek hasonlóak.
\( A= \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 4 & 1 \end{pmatrix} \quad B= \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix} \)
\( C= \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ -2 & 1 & 1 \end{pmatrix} \quad D=\begin{pmatrix} 1 & 3 & 1 \\ 2 &1 & 2 \\ 1 & 0 & 1 \end{pmatrix} \)