Matek 1
A kurzus 19 szekcióból áll: Függvények és inverz függvények, Vektorok, koordináták, térelemek, Determináns, sajátérték, sajátvektor, Komplex számok, Lineáris egyenletrendszerek, mátrixok inverze, Mátrixok, vektorok, vektorterek, Sorozatok, Küszöbindex és monotonitás, Sorok, Függvények határértéke és folytonossága, A függvényhatárérték precíz definíciója, Deriválás, Differenciálhatóság vizsgálata és az érintő egyenlete, L’Hospital szabály, Taylor sor, Taylor polinom, Szélsőértékfeladatok, könnyű függvényvizsgálatok, Függvényvizsgálat, gazdasági feladatok, Határozatlan integrálás, Határozott integrálás, Kétváltozós függvények
FÜGGVÉNYEK ÁBRÁZOLÁSA ÉS FÜGGVÉNYTRANSZFORMÁCIÓK
- Értelmezési tartomány, értékkészlet - Azokat a szerencsés x-eket, amelyekhez a függvény hozzárendel egy y számot, a függvény értelmezési tartományának nevezzük. Azokat az y-okat pedig, amelyeket hozzárendel értékkészletnek.
- Függvénytranszformációk - Külső és belső transzformációk.
- Eltolás és tükrözés - Tükrözés az x tengelyre és tükrözés az y tengelyre.
EXPONENCIÁLIS ÉS LOGARITMUS FÜGGVÉNYEK
- Exponenciális azonosságok - Lássuk a legfontosabb hatványazonosságokat.
- Exponenciális egyenletek - Megoldunk néhány exponenciális egyenletet.
- Exponenciális függvények - Az exponenciális függvények áttekintése.
- Logaritmus azonosságok - Lássuk a legfontosabb logaritmus azonosságokat.
- Logaritmikus egyenletek - Megoldunk néhány logaritmikus egyenletet.
- Logaritmus függvények - A logaritmus függvények áttekintése.
TRIGONOMETRIKUS FÜGGVÉNYEK ÉS AZ EGYSÉGKÖR
- Az egységkör - Az egységkör egy origo középpontú egységnyi sugarú kör és marhajó dolgokra képes...
- Kezdő sugár - Az egységkörben az x tengely irányába mutató sugárirány, innen kezdjük mérni a forgásszöget.
- Forgásszög - A kezdő sugártól mért szög.
- Koszinusz - Az egységkörben az egységvektor x koordinátája.
- Szinusz - Az egységkörben az egységvektor y koordinátája.
- Trigonometrikus függvények - Lássuk milyen trigonometrius függvények vannak.
- Periodikus függvények - Olyan függvények, amelyek időről időre megismétlik önmagukat.
- Trigonometrikus egyenletek - Lássuk hogyan kell megoldani trigonometrikus egyenleteket.
- Magasabb fokú trigonometrikus egyenletek - Néhány izgalmas feladat.
INVERZ FÜGGVÉNY
- Az inverz függvény - Lássuk hogyan kell kiszámolni az inverzt.
- Néhány fontosabb függvény inverze - Fontosabb függvények inverze és az inverz geometriai jelentése.
KOMPLEX SZÁMOK
- Valós számok - A számegyenes minden pontja egy valós szám.
- Imaginárius számok - Nekik már nincs hely a számegyenesen, így egy arra merőleges tengelyre helyezzük el őket. Ezt nevezzük imaginárius tengelynek.
- Komplex számok - Olyan számok, amelyek valós és képzetes részből épülnek fel.
- Műveletek komplex számokkal - Lássuk milyen műveleteket tudunk velük végezni.
- Komplex Konjugált - A komplex szám tükörképe az x tengelyre.
- Az algebra alaptétele - Minden polinom komplexben elsőfokú tényezők szorzatára bontható.
- Komplex számok abszolútértéke - Egy komplex szám abszolútértéke az origotól mért távoldága.
- A komplex számsík - Halmazok a komplex számsíkon.
- Algebrai alak - A komplex számok algebrai alakja.
- A trigonometrikus alak - A komplex számok osztását, szorzását és hatványozását megkönnyítő forma.
- Moivre formulák - A szorzásra, osztásra és hatványozásra vonatkozó azonosságok.
- Gyökvonás komplexben - A gyökvonás azonosságai.
SOROZATOK
- Sorozatok indexe - A sorozatok indexe azt mondja meg nekünk, hogy éppen hányadik tagnál járunk.
- Sorozatok határértéke - A sorozatok egyik legfontosabb tulajdonsága a határértékük, ami azt jelenti, hogy mi történik a sorozattal ahogy egyre és egyre nagyobb indexű tagjait vizsgáljuk.
- Nevezetes sorozatok - Exponenciális sorozatok határértéke, polinomiális sorozatok határértéke, gyökös sorozatok határértéke.
- Határérték és műveletek - Két sorozat összegének határértéke, két sorozat szorzatának határértéke, két sorozat hányadosának határértéke.
- A határérték kiszámolása - A törtes sorozatok határértékének kiszámolása: mindig a nevező legerősebb tagjával osztunk.
- Gyökös sorozatok - Lássuk mi a teendő gyökös sorozatok és ronda gyökös sorozatok esetén.
- e-hez tartó sorozatok - Egy nevezetes sorozatcsalád, az e-hez tartó sorozatok.
- Konvergens sorozatok - Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük.
- Divergens sorozatok - Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensenk nevezzük.
- Oszcilláló sorozatok - Az ugráló sorozatokat oszcillálónak nevezzük. Lássunk néhány példát.
SOROK
- Mik azok a végtelen sorok? - A bolha ugrásai a számegyenesen.
- Konvergens és divergens sorok - Mikor konvergens és mikor divergens egy sor?
- A mértani sor - A mértani sor képlete, példák mértani sorokra.
- A mértani sor összegképlete - A mértani sorok összegének kiszámolása.
- Konvergenciakritériumok - A sorok konvergenciájának megállapítására vonatkozó képletek.
- Hányados-kritérium - Egy fontos konvergenciakritérium.
- Gyök-kritérium - Egy másik fontos konvergenciakritérium
FÜGGVÉNYEK HATÁRÉRTÉKE
- Függvényhatárérték - Lássuk mi is az a függvényhatárérték!
- Határérték kiszámolása - Néhány remek módszer a függvények határértékének kiszámolására.
- Racionális törtfüggvények határértéke - Racionális törtfüggvényeknél előforduló 0/0 és szám/0 típusú határértékek kiszámolásának módszerei.
- Trigonometrikus függvények határértéke - Beszéljünk egy kicsit a trigonometrikus függvények határértékéről. Néhány nevezetes határérték, élükön a sinx/x típusúval.
FOLYTONOSSÁG
- Függvények folytonossága - Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.
- Szakadás - Ha egy adott pontban a függvényérték és a határérték nem egyezik meg, akkor a függvénynek szakadása van az adott pontban. Ennek számos típusa lehet...
- Megszüntethető szakadás - Ez olyankor van, ha a függvénynek létezik határértéke az adott pontban, de az nem egyezik meg a függvényértékkel.
- Ugrás - Ez olyankor van, ha a függvénynek nem létezik határértéke az adott pontban, de van jobb és bal oldali véges határértéke.
- Nem megszüntethető nem véges szakadás - Ez olyankor van, ha a függvénynek nem véges a határértéke az adott pontban.
- Nem megszüntethető oszcilláló szakadás - Ez mindegyik közül a legszörnyűbb eset, ilyenkor a függvénynek jobb és bal oldali határértéke sincs.
DIFFERENCIÁLSZÁMÍTÁS
- Mi az a deriválás? - A derivált a függvény grafikonjához húzott érintő meredeksége. Lássuk a sztorit..
- A deriválás definíciója - A deriválás bemutatása és a precíz definíció.
- Differencia hányados - A szelő meredeksége a differencia hányados.
- Differenciál hányados - Az érintő meredeksége a differenciál hányados.
- Alapderiváltak - Fontosabb függvények deriváltjai.
- Deriválási szabályok - Összeg, szorzat és hányados függvények deriváltjai.
- Lánc-szabály - Egy csodálatos szabály az összetett függvények deriválására.
- Összetett függvények deriválása - Példák összetett függvények deriválására.
A TELJES FÜGGVÉNYVIZSGÁLAT
- Az első derivált és a monotonitás - Az első derivált azt írja le, hogy a függvény mikor nő és mikor csökken.
- A második derivált és a konvexitás - A második derivált a függvény hangulatát írja le, ha pozitív, akkor a függvény vidám, ha negatív, akkor szomorkodik.
- Stacionárius pontok és a derivált előjele - A deriválás után megállapítjuk a derivált előjelét. Amikor a derivált nulla, olyankor stacionárius pont van.
- A függvény grafikonja - Lássuk, hogyan kell megrajzolni a függvény grafikonját.
- Gazdasági feladatok - Néhány izgalmas gazdasági feladat.
INTEGRÁLÁS, PRIMITÍV FÜGGVÉNY
- Határozott és határozatlan integrálás - A határozott integrálással függvények görbéje alatti területeket tudunk kiszámolni, míg a határozatlan integrálással az úgynevezett primitív függvényt tudjuk meghatározni. A kétféle integrálás között a Newton-Leibniz formula létesít kapcsolatot.
- Primitív függvény - Egy f(x) függvény primitív függvénye az a F(x) függvény, amelyet deriválva f(x)-et kapjuk.
- Newton-Leibniz formula - A tétel, amely ezt a kapcsolatot leírja, az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- Alapintegrálok - Tekintsük át a fontosabb függvények integráljait.
- Integrálási szabályok - Lássuk, milyen integrálási szabályok vannak...
- Szorzatok integrálása - Lássuk, milyen módszerek vannak szorzatok integrálására.
- Törtek integrálása - Lássuk, milyen módszerek vannak törtek integrálására.
- Parciális integrálás - Ezzel a remek módszerrel szorzatokat tudunk integrálni úgy, hogy egy bonyolultabb integrálásból csinálunk egy egyszerűbb integrálást.
- Összetett függvények integrálása - Összetett függvényeket általában akkor tudunk integrálni, ha azok meg vannak szorozva a belső függvényük deriváltjával. Van is erre egy remek kis képlet.
- Helyettesítéses integrálás - Bizonyos esetekben érdemes bevezetni egy helyettesítést, amivel az integrálás egyszerűbbé válik. Nézzük meg, hogyan!
HATÁROZOTT INTEGRÁLÁS
- Határozott és határozatlan integrálás - A határozott integrálással függvények görbéje alatti területeket tudunk kiszámolni, míg a határozatlan integrálással az úgynevezett primitív függvényt tudjuk meghatározni. A kétféle integrálás között a Newton-Leibniz formula létesít kapcsolatot.
- Primitív függvény - Egy f(x) függvény primitív függvénye az a F(x) függvény, amelyet deriválva f(x)-et kapjuk.
- Newton-Leibniz formula - A tétel, amely ezt a kapcsolatot leírja, az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- Két függvény közötti terület kiszámolása - Néhány tipikus feladat két függvény grafikonjai által közrezárt terület kiszámítására.
- Improprius integrál - Végtelenbe nyúló tartományok területének kiszámolása.
KÉTVÁLTOZÓS FÜGGVÉNYEK
- Mik azok a kétváltozós függvények? - Néhány elképesztően izgalmas példa kétváltozós függvényekre.
- Lokális szélsőértékek - A kétváltozós függvények minimumai és maximumai olyanok, mint hegycsúcsok és völgyek.
- Nyeregpont - Ez egy speciális pont a kétváltozós függvények felületén, amely bizonyos irányok szerint maximum, míg más irányok mentén minimum.
- Parciális deriválás - A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
- x szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol x-et tekintjük változónak.
- y szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol y-t tekintjük változónak.
- Másodrendű deriváltak - Az első deriváltak tovább deriválása újra parciális deriválással történik. Így négy darab másodrendű deriváltat kapunk. Két tiszta másodrendű deriváltat és két vegyes másodrendű deriváltat.
- Young tétel - A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
- Stacionárius pont - Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- Hesse mátrix - A másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen gyeregpontja van-e.
Függvények és inverz függvények
- -
A függvény értékkészlete azoknak az elemeknek a halmaza a B halmazban, amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.
- -
Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.
- -
A függvény hozzárendelésének megfordításával kapjuk a függvény inverzfüggvényét, amennyiben a megfordított hozzárendelés is egy egyértelmű hozzárendelés.
Vektorok, koordináták, térelemek
- -
Két pont közti vektor a végpontba mutató helyvektor minusz a kezdőpontba mutató helyvektor.
- -
Egy vektor hosszát megkapjuk, ha vesszük a koordinátái négyzetösszegének a gyökét. Két pont távolsága az őket összekötő vektor hossza.
- -
Vektorok összeadásakor összeadjuk az x koordinátákat és összeadjuk az y koordinátákat. Kivonáskor vesszük az x koordináták különbségét és az y koordináták különbségét.
- -
Két vektor skalárisszorzatát kiszámolhatjuk a vektorok hosszának és hajlásszögének segítségével, illetve a vektorok koordinátáival is.
- -
Egy vektor 90°-os elforgatásához megcseréljük a két koordinátáját és az egyik előjelét megváltoztatjuk.
- -
Két vektor merőleges egymásra, ha skaláris szorzatuk 0.
- -
Két vektor skaláris szorzata a vektorok hosszának szorzata a közbezárt szögük koszinuszával.
- -
Az egyenes egyenletének felírásához kell egy pontja és egy normálvektora.
- -
Az egyenes egyenletének felírásához a síkban szükségünk van az egyenes egy pontjára és a normálvektorára.
- -
Két pont közti vektort a vektorok koordinátáinak különbségével írhatunk fel.
- -
Két pont távolsága gyök alatt a koordináták különbségeinek négyzetösszege.
- -
A sík egyenletének felírásához kell egy pontja és egy normálvektora.
- -
A sík egyenletének felírásához kell a sík egy pontja és a normálvektora.
- -
Két vektor vektoriális szorzatát egy 3x3-as mátrix determinánsával számíthatjuk ki, ahol a mátrix első sora egységvektorok, a második és harmadik sora pedig az a és b vektorok.
- -
Két vektor vektoriális szorzata egy olyan harmadik vektort ad, ami merőleges a két vektor által kifeszített síkra.
Determináns, sajátérték, sajátvektor
- -
Egy 2x2-es mátrix determinánsát úgy kapjuk, hogy a bal átló elemeinek szorzatából kivonjuk a jobb átló elemeinek szorzatát.
- -
A determináns úgy működik, hogy minden négyzetes mátrixból csinál egy valós számot. Hogy miért, és, hogy hogyan, az mindjárt kiderül.
- -
Egy túl jó módszer a determináns kiszámolására.
- -
Egy nem túl jó módszer a determináns kiszámolására.
- -
Példák mikor nulla egy mátrix determinánsa. Két mátrix szorzatának determinánsa.
- -
Azokat a mátrixokat nevezzük regulárisnak, amelyek determinánsa nem nulla.
- -
Azokat a mátrixokat nevezzük szingulárisnak, amelyek determinánsa nulla.
- -
A Cramer szabály egy újabb módszer az egyenletrendszerek megoldására.
- -
A sajátértékek kiszámolásához szükséges egyenlet.
- -
A mátrix főátló elemeiből kivonunk $\lambda$-kat, majd ennek vesszük a determinánsát.
- -
Egy mátrix sajátértéke egy valós szám, amely azt mondja meg, hogy a sajátvektor hányszorosát kapjuk akkor, ha azt a mátrixszal szorozzuk.
- -
Egy mátrix sajátvektora egy olyan nem nullvektor, ami azt tudja, hogy megszorozva a mátrixszal az eredeti vektor skalárszorosát kapjuk. Ez igazán remek, de, hogy pontosan miért, nos ez mindjárt kiderül.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix spektrálfelbontását.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor a mátrix diagonizálható.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix diagonális alakját. Lássuk ez miért ilyen roppant fontos.
- -
A spektrálfelbontás segítségével könnyebben hatványozhatunk.
- -
A sajátfelbontás egy olyan, kizárólag diagonalizálható mátrixokkal végezhető felbontás, ami megkönnyíti a hatványozást.
- -
Egy mátrix főminor mátrixai a mátrix bal felső sarkától kezdődő sarok mátrixok determinánsai.
- -
Egy nxn-es mátrix indefinit, ha van nullánál nagyobb és nullánál kisebb sajátértéke is..
- -
Egy nxn-es mátrix negatív definit, ha minden sajátértéke negatív.
- -
Egy nxn-es mátrix negatív szemidefinit, ha minden sajátértéke kisebb vagy egyenlő 0.
- -
Egy nxn-es mátrix pozitív definit, ha minden sajátértéke pozitív.
- -
Egy nxn-es mátrix pozitív szemidefinit, ha minden sajátértéke nagyobb vagy egyenlő 0.
- -
Egy mátrix sarok főminor mátrixai a mátrix bal felső sarkától kezdődő sarok mátrixok determinánsai.
- -
Éjszaka nem ajánlatos összefutni velük az utcán...
- -
A kvadratikus alakok mátrixa segít eldönteni a definitséget.
- -
A képtér és a magtér dimenzióinak összege éppen $V_1$ dimenziója.
- -
A képtér egy olyan altér $V_2$-ben, amely azokból a vektorokból áll, amiket a $V_1$-beli vektorokból csinál a leképezés.
- -
A lineáris leképezés egy test feletti vektorterek között ható művelettartó függvény.
- -
Minden lineáris leképezést jellemezhetünk egy mátrixszal.
- -
A magtér egy olyan altér $V_1$-ben, amelyek képe a leképezés során nullvektor.
- -
Egy leképezésnek akkor létezik inverze, ha a leképezés mátrixának létezik inverze.
- -
Két leképezés kompozíciója a mátrixaik szorzata.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix diagonális alakját. Lássuk ez miért ilyen roppant fontos.
- -
Ha a mátrixnak létezik diagonális alakja, akkor van sajátbázisa, ami fantasztikus dolgokra képes.
- -
A lineáris leképezések másnéven homomorfizmusok. Ezek a homomorfizmusok és azok mátrixai maguk is egy vektorteret alkotnak, ezt a vektorteret $Hom(V_1, V_2)$-nek nevezzük.
- -
Az A és B mátrixok hasonlók, ha létezik egy C mátrix, amivel ha jobbról szorozzuk a B-t, balról pedig a C inverzével szorozzuk, akkor ennek eredménye A.
Komplex számok
- -
Nekik már nincs hely a számegyenesen, így egy arra merőleges tengelyre helyezzük el őket. Ezt nevezzük imaginárius tengelynek.
- -
Olyan számok, amelyek valós és képzetes részből épülnek fel.
- -
Komplex számok összeadásakor összeadjuk a valós részeket és külön összeadjuk a képzetes részeket. Kivonáskor külön kivonjuk egymásból a valós részeket és a képzetes részeket.
- -
Egy képlet az a+bi alakú komplex számok szorzásához.
- -
Halmazok a komplex számsíkon.
- -
A komplex szám tükörképe az x tengelyre.
- -
Egy komplex szám abszolútértéke az origotól mért távolsága.
- -
Egy képlet komplex számok hatványozásához, ha a komplex szám trigonometrikus alakban van.
- -
Képlet komplex számok szorzásához és osztásához, ha azok trigonometrikus alakban vannak megadva.
- -
A komplex számok osztását, szorzását és hatványozását megkönnyítő forma.
- -
Egy képlet komplex számok gyökvonásához, ha a komplex szám trigonometrikus alakban van.
- -
Egy képlet komplex számok gyökvonásához, ha a komplex szám exponenciális alakban van.
- -
Egy képlet komplex számok hatványozásához, ha a komplex szám exponenciális alakban van.
- -
Képlet komplex számok szorzásához és összeadásához, ha a komplex számok exponenciális alakban vannak megadva.
Lineáris egyenletrendszerek, mátrixok inverze
- -
Egy egyenletrendszer együtthatómátrixa az x-ek együtthatóiból álló mátrix.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Az egyenletrendszer megoldásának egy szuper, de koránt sem a legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Ha egy egyenletrendszernek több az ismeretlene, mint ahány egyenlete van, akkor az egyenletrendszernek nincs egyértelmű megoldása.
- -
Ha egy egyenletrendszerben két olyan egyenlet szerepel, ahol az ismeretlenek együtthatói megegyeznek, de más az eredményük, akkor az ellentmondó egyenletrendszer, aminek nincs megoldása.
- -
A szabadságfok a szabadváltozók száma.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
Mátrixok, vektorok, vektorterek
- -
- -
Ha egy mátrixot osztunk egy számmal, akkor a mátrix minden elemét osztani kell a számmal.
- -
Ha egy mátrixot egy számmal szorzunk, akkor a mátrix összes elemét meg kell szorozni a számmal.
- -
Két mátrix kivonásakor kivonjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet kivonni egymásból, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix összeadásakor összeadjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet összeadni, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix szorzata akkor létezik, ha a bal oldali mátrix oszlopainak száma megegyezik a jobb oldali mátrix sorainak számával. Az eredménymátrix i-edik sorának j-edik elemét úgy kapjuk, hogy a bal oldali mátrix i-edik sorát skalárisan szorozzuk a jobb oldali mátrix j-edik oszlopával. (Tehát az első elemet az elsővel, a másodikat a másodikkal stb. szorozzuk, majd összeadjuk)
- -
A mátrix összeadás kommutatív és asszociatív.
- -
A mátrixszorzás nem kommutattív, de asszociatív.
- -
A diagonális mátrix olyan kvadratikus mátrix, aminek a főátlóján kívüli elemek nullák.
- -
Az egységmátrixok olyan diagonális mátrixok, aminek minden főátló-eleme egy.
- -
Az inverz mátrix egy olyan mátrix, hogy ha azzal szorozzuk az eredeti mátrixot, akkor egységmátrixot kapunk. Ha balról szorozva kapunk egységmátrixot, akkor bal inverz, ha jobbról szorozva, akkor jobb inverz mátrix.
- -
A kvadratikus mátrix négyzetes mátrix vagyis ugyanannyi sora van, mint oszlopa.
- -
Azokat a mátrixokat, melyek transzponáltjuk önmaga, szimmetrikus mátrixnak nevezzük.
- -
A transzponált a mátrix sorainak és oszlopainak felcserélése.
- -
Két vektor diadikus szorzata egy mátrix. Lássuk milyen.
- -
A skaláris szorzat két vektor közti művelet, ami csinál belőlük egy számot.
- -
Vektort egy számmal úgy osztunk, hogy a vektor minden koordinátáját leosztjuk a számmal.
- -
Vektort egy számmal úgy szorzunk, hogy a vektor minden koordinátáját megszorozzuk a számmal.
- -
Két vektort úgy vonunk ki egymásból, hogy minden egyes koordinátájukat külön-külön kivonjuk egymásból.
- -
Két vektort úgy adunk össze, hogy minden egyes koordinátájukat külön-külön össze adjuk.
- -
Ha egy mátrixot megszorzunk balról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik sorát.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak egy oszlopában lévő elemeit.
- -
Ha egy mátrixot megszorzunk jobbról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik oszlopát.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak sorait.
- -
Az egyenes egyenletének felírásához kell egy pontja és egy normálvektora.
- -
Az egyenes egyenletének felírásához a síkban szükségünk van az egyenes egy pontjára és a normálvektorára.
- -
Két pont közti vektort a vektorok koordinátáinak különbségével írhatunk fel.
- -
Két pont távolsága gyök alatt a koordináták különbségeinek négyzetösszege.
- -
A sík egyenletének felírásához kell egy pontja és egy normálvektora.
- -
A sík egyenletének felírásához kell a sík egy pontja és a normálvektora.
- -
Két vektor vektoriális szorzatát egy 3x3-as mátrix determinánsával számíthatjuk ki, ahol a mátrix első sora egységvektorok, a második és harmadik sora pedig az a és b vektorok.
- -
Két vektor vektoriális szorzata egy olyan harmadik vektort ad, ami merőleges a két vektor által kifeszített síkra.
- -
A vektorösszeadás kommutatív, asszociatív, létezik nullelem és létezik ellentett. A skalárszoros asszociatív, disztributív a vektorokra és a skalárokra is, és létezik egységszeres.
- -
Egy vektorrendszer akkor lineárisan független, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.
- -
Egy vektorrendszer akkor lineárisan összefüggő, ha a vektorok lineáris kombinációjaként a nullvektor úgy is elő tud állni, hogy nem minden szorzótényező 0.
- -
A bázis független generátorrendszer.
- -
Egy vektorrendszer akkor alkot független rendszert, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.
- -
Vektorok generátor-rendszert alkotnak, ha minden vektortérbeli vektor elő áll az ő lineáris kombinációjuként.
- -
Egy vektorrendszer rangja a benne lévő független vektorok maximális száma
- -
W altér V-ben, ha részhalmaza és maga is vektortér a V-beli műveletekre. Nos ez remek, de nézzük meg, mit is jelet mindez.
- -
Egy vektor akkor állítható egy vektorrendszerrel, ha előáll azon vektorok lineáris kombinációjaként.
Sorozatok
- -
Nevezetes 0-hoz tartó sorozatok.
- -
Nevezetes végtelenhez tartó sorozatok.
- -
Nevezetes gyökös sorozatok határértéke.
- -
Exponenciális kifejezések határértéke.
- -
Egy nevezetes sorozatcsalád, az e-hez tartó sorozatok.
- -
Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük. Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük. Az ugráló sorozatokat oszcillálónak nevezzük. Lássunk néhány példát.
- -
A végtelenbe tartó sorozatok nagyságrendi sorrendje azt mondja meg, hogy melyik sorozat milyen ütemben tart a végtelenbe. Minél nagyobb nagyságrendű egy sorozat, annál gyorsabban tart a végtelenbe
- -
- -
Ha két rendőr közrefog egy honpolgárt és a két rendőr konvergál a rendőrőrsre, akkor az általuk közrefogott honpolgárnak is szükségképpen konvergálnia kell a rendőrőrsre..
- -
Egy sorozat limesz inferiorja a torlódási pontjainak infinuma. A limesz szuperiorja a torlódási pontjainak szuprémuma.
- -
Egy sorozatnak torlódási pontja az A szám, ha bármilyen kis környezetében a sorozatnak végtelen sok tagja van.
Küszöbindex és monotonitás
- -
Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük.
- -
A sorozatok egyik legfontosabb tulajdonsága a határértékük, ami azt jelenti, hogy mi történik a sorozattal ahogy egyre és egyre nagyobb indexű tagjait vizsgáljuk.
- -
Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük.
- -
A sorozat monotonitása lehet monton nő, monoton csökkenő, szigorúan monoton nő, szigorúan monoton csökkenő.
Sorok
- -
A mértani sor képlete, példák mértani sorokra.
- -
Egy másik fontos konvergenciakritérium, ami az n-edik tag n-edik gyökének segítségével dönti el a konvergenciát.
- -
Egy fontos konvergenciakritérium, amely az n+1-edik tag és az n-edik tag hányadosával dönti el a konvergenciát.
- -
Speciális sorok.
- -
Ha egy sorozat határértéke nem 0, akkor a belőle képzett sor divergens.
- -
Speciális sorok.
- -
Egy végtelen sor akkor konvergens, ha részletösszegsorozata konvergens.
- -
A sorok konvergenciájának megállapítására vonatkozó képletek.
- -
Tört hatványának sorának konvergenciája a hatványkitevőtől függően.
- -
Olyan sorok, amelyek valójában az első és az utolsó tagon kívül semmilyen más tagot nem tartalmaznak.
- -
Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük, ahol $r$ a konvergenciasugár.
- -
A hatványsorok konvergenciájának vizsgálata.
Függvények határértéke és folytonossága
- -
Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.
- -
Függvények szakadása négy féle lehet: megszüntethető szakadás, ugrás, nem megszüntethető, nem véges szakadás, nem megszüntethető oszcilláló szakadás.
A függvényhatárérték precíz definíciója
- -
Lássuk mi is az a függvényhatárérték!
- -
Lássuk mi is az a függvényhatárérték!
Deriválás
- -
Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.
Differenciálhatóság vizsgálata és az érintő egyenlete
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
A függvény érintője egy olyan egyenes, amely egy függvényt pontosan egy pontban érint.
L’Hospital szabály, Taylor sor, Taylor polinom
- -
A határérték számítás csodafegyvere, egy szuper módszer, amivel nagyon sok bonyolult határérték gyorsan kiszámolható.
- -
Néhány exponenciális, logaritmusos és végtelenhez, nullához tartó nevezetes sorozatok határértékei.
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Az $e^x$, lnx, sinx és cosx függvények Taylor sorai.
- -
Amikor egy függvény x helyen lévő értékét szeretnénk közelíteni egy Taylor polinommal, akkor lesz egy kis hibánk, mivel a polinom nem teljesen követi a függvényt. Ennek a hibának a kifejezésére van a Lagrange-féle maradéktag.
Függvényvizsgálat, gazdasági feladatok
- -
Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.
- -
A második derivált a függvény hangulatát írja le, ha pozitív, akkor a függvény vidám, ha negatív, akkor szomorkodik.
- -
Az első derivált azt írja le, hogy a függvény mikor nő és mikor csökken.
- -
A deriválás után megállapítjuk a derivált előjelét. Amikor a derivált nulla, olyankor stacionárius pont van.
Határozatlan integrálás
- -
Az f(x) függvény primitív függvényének jele F(x) és azt tudja, hogy ha deriváljuk, akkor visszakapjuk f(x)-et. Egy függvény primitív függvényeinek halmazát nevezzük a függvény határozatlan integráljának.
- -
Polinomok integrálása. Törtfüggvény integrálása. Exponenciális függvények integrálása. Trigonometrikus függvények integrálása.
- -
Polinomok, törtfüggvény, exponenciális függvények, trigonometrikus függvények integráljainak lineáris helyettesítései.
- -
Integráláskor a konstans szorzó kivihető.
- -
Összeget külön-külön is integrálhatunk.
- -
Ha a szorzás elvégezhető, akkor végezzük el, és utána integráljunk.
- -
Szorzat integrálásának egy speciális esete, amikor a függvény n-edik hatványon van és meg van szorozva a deriváltjával.
- -
Ezzel a remek módszerrel szorzatokat tudunk integrálni úgy, hogy egy bonyolultabb integrálásból csinálunk egy egyszerűbb integrálást.
- -
Összetett függvényeket általában akkor tudunk integrálni, ha azok meg vannak szorozva a belső függvényük deriváltjával. Van is erre egy remek kis képlet.
- -
Próbálkozzunk a tört földarabolásával és utána integráljunk.
- -
Törtek integrálásának egy speciális esete, amikor a tört számlálója a nevező deriváltja.
- -
A helyettesítéses integrálás lényege, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk majd megoldani a feladatot.
Határozott integrálás
- -
A Newton-Leibniz formula egy egyszerűen használható képlet a határozott integrál kiszámításához. Ez a tétel az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- -
Egy zárt intervallumon értelmezett függvény akkor Riemann integrálható, ha egyetlen olyan szám létezik, amely bármely alsó közelítő összegénél nagyobb egyenlő, és bármely felső közelítő összegénél kisebb egyenlő.
- -
Végtelenbe nyúló tartományok területének kiszámolása egy fontos függvénnyel.
- -
Forgástestek térfogatának és felszínének képletei határozott integrálással.
Kétváltozós függvények
- -
A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot.
- -
A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
- -
A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
- -
másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.
- -
Egy általános módszer, amivel kétváltozós függvények szélsőértékeit és nyeregpontjait lehet meghatározni
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.