Két átlag különbségének becslése | mateking
 

Két átlag különbségének becslése

Ha mindkét sokaság közel normális eloszlású, akkor az átlagok különbségének becslésére ez a formula van forgalomban.

$ d \pm t_{1- \frac{\alpha}{2}} \cdot s_d $ ahol $d=\overline{x}-\overline{y}$

$s_d = s_c \cdot \sqrt{\frac{1}{n_Y}+\frac{1}{n_X}}$ itt $s_c^2=\frac{(n_X-1)s_X^2+(n_Y-1)s_Y^2}{n_X+n_Y-2}$

$1-\alpha=$ konfidencia szint

$\overline{x}=$ az egyik minta átlaga

$\overline{Y}=$ a másik minta átlaga

$n_X=$ az egyik minta elemszáma

$n_Y=$a másik minta elemszáma

A szabadságfok $v=n_X + n_Y-2$