- Rémes előzmények
- Sorozatok vizsgálata, monotonitás, küszöbindex
- Sorozatok
- Függvények határértéke és folytonossága
- Deriválás
- Differenciálhatóság, érintő egyenlete
- Függvényvizsgálat, gazdasági feladatok
- Integrálás
- Határozott integrálás, területszámítás
- Kétváltozós függvények
- Mátrixok és vektorok
- Lineáris függetlenség, bázis
- Elemi bázistranszformáció, egyenletrendszerek
Rémes előzmények
1. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=(-x-2)^2 \)
b) \( f(x)=(-x-2)^2+3 \)
c) \( f(x)=(2x-4)^2-3 \)
d) \( f(x)=\sqrt{x-3}+2 \)
e) \( f(x)=\sqrt{3x+6}+4 \)
f) \( f(x)=\sqrt{-2x-6}+2 \)
Megnézem, hogyan kell megoldani
2. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=x^2-6x+7 \)
b) \( f(x)=x^2+5x+6\)
Megnézem, hogyan kell megoldani
3. A hatványazonosságok alkalmazásával számítsuk ki az alábbi műveleteket.
a) \( \frac{6^3}{6^2} \)
b) \( \left( 6^5 \right)^3 \)
c) \( 9^{\frac{1}{2}} \)
Megnézem, hogyan kell megoldani
4. Oldjuk meg az alábbi logaritmikus egyenleteket.
a) \( 4^{x+3}+5=13 \)
b) \( 4\cdot 3^{x+1} = 26 - 3^x \)
c) \( \log_2{(x+5)}=3 \)
d) \( \log_2{(2x+6)}+1=3+\log_2{x} \)
Megnézem, hogyan kell megoldani
5. Az alábbi fokban megadott szögek hány radiánnak felelnek meg?
a) 45°
b) 90°
c) 180°
d) Adjuk meg az alábbi szögek szinuszának és koszinuszának pontos értékét!
\( 0°, 45°, 60°, 90°, 120°, 135°, 180° \)
Megnézem, hogyan kell megoldani
6. Oldjuk meg az alábbi trigonometrikus egyenleteket
a) \( \sin{x} = \frac{1}{2} \)
b) \( \cos{x} = \frac{1}{2} \)
c) \( \sin{3x} = -\frac{1}{2} \)
Megnézem, hogyan kell megoldani
7. Oldjuk meg a $[0,2\pi]$ intervallumba eső számok halmazán az alábbi trigonometrikus egyenleteket.
a) \( 2 \cos{x} +1 =0 \)
b) \( 2 \cos^2{x} - \cos{x} = 0 \)
Megnézem, hogyan kell megoldani
8. Adjuk meg az $f(x)=16-x^2$ függvény inverzét, ha
a) \( x \in R \)
b) \( x \in R^+ \)
c) \(-4 \leq x \leq 0 \)
d) \( -4 \leq x \leq 0 \)
Megnézem, hogyan kell megoldani
9. Adjuk meg az alábbi függvények inverz függvényeit.
a) \( f(x)=2^{5-4x} \)
b) \( f(x)=3+\log_2{(x-5)} \)
c) \( f(x)=4+e^{2x-1} \)
d) \( f(x)=7+ln{\frac{x+3}{4}} \)
Függvénytranszformációk
Belső függvénytranszformáció: $f(x+a)$, ez úgy működik, hogy az $x$ tengely mentén tolja el a függvény grafikonját.
Külső függvénytranszformáció: $f(x)+a$, ez pedig az $y$ tengelyen tolja el a függvényt.
Függvény szorzása számmal: $a\cdot f(x)$, ilyenkor megnyújtjuk a függvényt az $y$ tengely szerint.
Függvény változójának szorzása egy számmal: $f(a \cdot x)$, ilyenkor az $x$ tengely szerint nyújtjuk a függvényt.
Egységkör
Azt a kört a koordinátarendszerben, aminek középpontja az origo és a sugara 1, egységkörnek nevezzük.
koszinusz
Az egységkörben az $x$ tengely irányát kezdő iránynak nevezzük, az egységvektor végpontjába mutató irányt pedig záró iránynak. A két irány által bezárt szög $\alpha$. Az egységvektor végpontjának $x$ koordinátáját nevezzük az $\alpha$ szög koszinuszának, és így jelöljük: $\cos{ \alpha}$.
Szinusz
Az egységkörben az $x$ tengely irányát kezdő iránynak nevezzük, az egységvektor végpontjába mutató irányt pedig záró iránynak. A két irány által bezárt szög $\alpha$. Az egységvektor végpontjának $y$ koordinátáját nevezzük az $\alpha$ szög szinuszának, és így jelöljük: $\sin{ \alpha}$.
Szinuszos és koszinuszos egyenletek megoldása
A $\sin{x}$ és $\cos{x}$ függvények periodikusak, ez azt jelenti, hogy bizonyos időközönként megismétlik önmagukat. Ezt az időközt periódusnak nevezzük és az ő esetükben a periódus $2\pi$.
Ha van egy ilyen egyenlet, hogy
$ \sin{x} = \frac{1}{2} $
akkor ennek a periodikussága miatt végtelen sok megoldása van, ezért írjuk oda a megoldások mögé, hogy $+2k\pi$.
További nehézség, hogy két megoldás is van, az egyiket a számológépünk adja, a másikat pedig...
Szinusz esetén úgy, hogy a két megoldás összegének $\pi$-nek kell lennie.
Koszinusz esetén pedig úgy, hogy a két megoldás mindig egymás minuszegyszerese.
Tangens
Egy $\alpha$ szög tangense az $\alpha$ szög szinuszának és koszinuszának hányadosával egyenlő:
\( \tan{\alpha} = \frac{ \sin{\alpha}}{\cos{\alpha}} \quad \alpha \neq \frac{\pi}{2}+k\cdot \pi \quad k \in Z \)
Trigonometriai összefüggések
\( \tan{x} = \frac{ \sin{x} }{ \cos{x} } \)
\( \cot{x} = \frac{ \cos{x} }{ \sin{x} } \)
\( \sin^2{\alpha} + \cos^2{\alpha} = 1 \quad \sin^2{\alpha} = 1-\cos^2{\alpha} \quad \cos^2{\alpha}=1-\sin^2{\alpha} \)
\( \cos{\alpha} = \sin{ \left( \frac{ \pi}{2} - \alpha \right) } \quad \cos{\alpha} = \sin{ \left( \alpha + \frac{ \pi}{2}\right) } \quad \sin{\alpha} = \sin{ ( \pi - \alpha) }\)
\( \sin{\alpha} = \cos{ \left( \frac{ \pi}{2} - \alpha \right) } \quad -\sin{\alpha} = \cos{ \left( \alpha + \frac{ \pi}{2}\right) } \quad -\cos{\alpha} = \cos{ ( \pi - \alpha) }\)
\( \sin{2\alpha} = 2 \sin{\alpha}\cos{\alpha} \quad \sin{(\alpha \pm \beta)} = \sin{\alpha} \cos{\beta} \pm \cos{\alpha} \sin{\beta} \)
\( \cos{2\alpha} = \cos^2{\alpha} - \sin^2{\alpha} \quad \cos{(\alpha \pm \beta )} = \cos{\alpha} \cos{\beta} \mp \sin{\alpha}\sin{\beta} \)
\( \sin^2{\alpha}=\frac{1-\cos{2 \alpha}}{2} \)
\( \cos^2{\alpha}=\frac{1+\cos{2 \alpha}}{2} \)
inverzfüggvény
Minden függvény egy $x \mapsto y$ hozzárendelés, aminek az inverze, ha az egyáltalán létezik, az $y \mapsto x$ fordított hozzárendelés.
Inverze csak azoknak a függvényeknek van, amik két különböző $x$-hez különböző $y$-okat rendelnek, ezt úgy mondjuk, hogy kölcsönesen egyértelműek, vagy kicsit rövidebben injektívek.
A teljes négyzetté kiegészítés művészete.
Az előző képsorban látott függvény-transzformációk alapján megpróbáljuk ábrázolni ezt a függvényt.
Ahhoz, hogy eldönthessük, ez a függvény milyen transzformációknak esett áldozatául, először egy nagyon vicces dolgot kell csinálnunk vele.
Ezt a dolgot teljes négyzetté kiegészítésnek nevezzük és még később is sokszor kelleni fog, így hát essünk túl rajta.
A lényeg ez a két azonosság:
Most éppen ebbe az irányba használjuk majd őket.
Addig-addig nézegetjük a függvényt, amíg belelátjuk valamelyik azonosságot.
Lássuk csak mennyi lehet vajon b.
Nos ennyi:
És ezt már tudjuk ábrázolni, ha még emlékszünk az előző képsorra.
Nézzük meg ezt is:
Most pedig itt az ideje, hogy újabb függvényekkel ismerkedjünk meg.
A következő képsorban már jönnek is az exponenciális függvények.
Ez exponenciális függvényekkel való ismerkedésünket kezdjük az alapokkal, a hatványazonosságokkal.
Hatványozni jó dolog és így kezdetben bőven elég annyit tudni, hogy
de semmi ördögi nem lesz itt.
Az első hatványazonosság azzal fog foglalkozni, hogy mi történik, ha megszorozzuk ezt mondjuk azzal, hogy 62.
Hát nézzük meg.
Nos ha ezeket összeszorozzuk, akkor
a kitevők összeadódnak.
Ez lesz az első azonosság.
HATVÁNYAZONOSSÁGOK
Most nézzük meg mi történik, ha ezeket elosztjuk egymással.
De azért van itt egy apró kellemetlenség.
Már jön is.
Nos amikor a nevező kitevője nagyobb, ilyenkor az eredmény egy tört.
Itt pedig a kitevő negatív lesz.
Most lássuk, hogyan kell hatványt hatványozni.
Nos így:
A kitevőket kell összeszoroznunk.
Itt van aztán ez, hogy
Na ez vajon mi lehet?
Nézzük meg mi történik ha alkalmazzuk rá a legújabb azonosságunkat.
Vagyis ez valami olyan, amit ha négyzetre emelünk, akkor 9-et kapunk.
Ilyen éppenséggel van, ezt hívjuk -nek.
A törtkitevő tehát gyökvonást jelent.
Az előbbi két azonosságot kicsit továbbfejlesztve kapunk egy harmadikat.
Ha van egy ilyen, hogy
nos akkor ezen ki is próbálhatjuk ezt a képletet.
Jön itt még néhány újabb képlet,
de most már lássuk a függvényeket.
Így néz ki a 2x függvény. Ez pedig a 3x.
Ha az alap egy 2 és 3 közti szám, akkor a függvény a 2x és a 3x között van.
Például egy ilyen szám a
2,71828182845904523536028747135266249775724709369995…
Ez a szám mágikus jelentőséggel bír a matematikában és az egyszerűség kedvéért elnevezték e-nek.
Ez a függvény tehát az ex.
Az összes 1-nél nagyobb alapú exponenciális függvény valahogy így néz ki.
Ha az alap 1-nél kisebb, nos az egy másik állatfajta.
Színre lép a logaritmus
És most egy új szereplő lép színre, a logaritmus.
Nos ez a logaritmus egy nagyon remek dolog, de kis magyarázatot igényel.
Mindössze arról van szó, hogy azt mondja meg, a-t hányadik hatványra kell emelni ahhoz, hogy x-et kapjunk.
Itt van például ez:
Ez azt jelenti, hogy 2-t hányadik hatványra kell emelnünk, hogy 8-at kapjunk.
Nos 23=8, tehát a válasz…
Vagy nézzük meg ezt:
Nos lássuk csak
Itt jön aztán egy nehezebb ügy:
A kérdés az, hogyan lesz a 8-ból 2. Az elosztjuk 4-gyel ugye nem jó válasz, mert valami hatványozás kell ide.
A jó válasz:
Próbáljuk meg kitalálni, mennyi lehet ez:
A kérdés, 8 a hányadikon a 16.
Nos ami a 8-ban és a 16-ban közös, az a 2, mert 23=8 és 24=16.
Így aztán úgy jutunk el a 8-ból a 16-hoz, hogy előbb a 8-ból csinálunk 2-t,
utána pedig a 2-ből 16-ot.
Mindezek után már nem jelenthet gondot ez sem:
Sőt ez sem:
Most pedig lássuk a logaritmusos azonosságokat.
LOGARITMUS AZONOSSÁGOK
A logaritmus egyik legnagyobb haszna az, hogy képesek vagyunk megoldani az ilyen egyenleteket, mint amilyen ez
Mindkét oldalnak vesszük a logaritmusát.
És voila.
Általánosítva, ha van egy ilyen, hogy
akkor ebből így kapjuk meg x-et.
A megfordítását is jegyezzük meg, ha
akkor így kapjuk meg x-et.
Exponenciális egyenlet megoldása
Logaritmikus egyenlet megoldása
Oldjuk meg például ezeket:
Most pedig lássuk a függvényeket.
Nos a logaritmus csak pozitív x-ekre van értelmezve.
Ha az alap 1-nél nagyobb, akkor a függvény növekszik.
Ha 1-nél kisebb, akkor csökken.
Itt egy csodálatos kör, aminek a középpontja az origó és a sugara 1.
Ezt a kört egységkörnek nevezzük.
Az egységkör pontjainak x és y koordinátái -1 és 1 közé eső számok.
Ezekkel a koordinátákkal foglalkozni meglehetősen unalmas időtöltésnek tűnik…
Mivel azonban a matematikában mágikus jelentőségük van, egy kis időt mégis szakítanunk kell rájuk.
Itt van, mondjuk ez a P pont.
Az egységkörben az x tengely irányát kezdő iránynak nevezzük,
a P pontba mutató irányt pedig záró iránynak.
A két irány által bezárt szög lehet pozitív,
és lehet negatív.
A szöget pedig mérhetjük fokban és mérhetjük radiánban.
Nos, ez a radián egész érdekesen működik:
a szögek mérésére az egységkör ívhosszát használja.
Van itt ez a szög, ami fokban számítva
És most lássuk mi a helyzet radiánban.
A kör kerületének a képlete .
Az egységkör sugara 1, tehát a kerülete .
A 45fok a teljes körnek az 1/8-a,
így a hozzá tartozó körív is a teljes kerület 1/8-a vagyis
Nos így kapjuk, hogy
Most pedig lássuk az egységkör pontjainak koordinátáit.
Kezdjük ezzel, amikor
Ezt jegyezzük föl.
A jelek szerint ez egy egyenlő szárú háromszög, tehát x=y.
Jön a Pitagorasz-tétel:
Most nézzük meg mi van akkor, ha
Ha egy háromszögben van két -os szög, akkor a háromszög egyenlő oldalú.
És most jön a Pitagorasz-tétel.
Az esetét elintézhetjük egy tükrözés segítségével.
Ha az -os esetet tükrözzük, akkor pedig eljutunk -hoz.
-nál túl sok számolásra nincs szükség.
Ahogyan –nál és -nál sem.
És most elérkezett az idő, hogy nevet adjunk ezeknek a koordinátáknak.
Az x koordinátát hívjuk Bobnak,
az y koordinátát pedig…
Nos mégsem olyan jó név a Bob. Egy K-val kezdődő név jobban hangzana.
Legyen mondjuk koszinusz.
A másik pedig szinusz.
Rögtön folytatjuk.
Van itt ez az egység sugarú kör.
Az egységkörben az x tengely irányát kezdő iránynak nevezzük,
a P pontba mutató irányt pedig záró iránynak.
A két irány által bezárt szög lehet pozitív,
és lehet negatív.
A szöget pedig mérhetjük fokban és mérhetjük radiánban.
A P pont x koordinátáját -nak nevezzük.
Az y koordinátáját -nak.
Most pedig számoljuk ki néhány szög szinuszát és koszinuszát.
A sinx és cosx periodikus függvények.
Van itt ez az egység sugarú kör.
Az egységkörben az x tengely irányát kezdő iránynak nevezzük,
a P pontba mutató irányt pedig záró iránynak.
A két irány által bezárt szög lehet pozitív,
és lehet negatív.
A szöget pedig mérhetjük fokban és mérhetjük radiánban.
A P pont x koordinátáját -nak nevezzük.
Az y koordinátáját -nak.
Most pedig számoljuk ki néhány szög szinuszát és koszinuszát.
A sinx és cosx periodikus függvények.
Ez azt jelenti, hogy bizonyos időközönként megismétlik önmagukat.
Ezt az időközt periódusnak nevezzük és az ő esetükben ez a periódus 2pi.
Ha van egy ilyen egyenlet, hogy
nos akkor ennek a periodikusság miatt végtelen sok megoldása van.
Ráadásul van egy kék megoldás,
ezt adja a számológép, ez meg a periódus.
Na persze a számológéppel ezt úgy lehet kiszámolni, hogy
és van egy zöld.
Na, ezt már nem adja ki a számológép, hanem egy kis cselhez kell folyamodnunk.
A szinusz úgy működik, hogy mindig van egy kék megoldás, amit a számológép ad,
és van egy zöld megoldás, amit nekünk kell kiszámolni és úgy kapjuk,
hogy az összegüknek éppen pi-nek kell lennie.
Ezt nem árt megjegyezni.
Lássuk, mi a helyzet a koszinusszal.
Itt is lesz egy kék és egy zöld megoldás,
ráadásul mindkettőből végtelen sok.
A helyzet annyival egyszerűbb, mint a szinusz esetében, hogy itt
a kék és a zöld megoldás mindig egymás mínuszegyszerese.
A kéket adja a számológép.
és ha elé biggyesztünk egy mínuszjelet.
nos akkor meg is van a zöld.
A koszinusz tehát sokkal jobb, mint a szinusz.
Itt jön egy újabb remek történet.
A szinusz úgy működik, hogy a kék megoldást mindig a számológép adja,
a zöld megoldás pedig úgy jön ki, hogy a két szög összege mindig pi legyen.
Most pedig újabb állatfajták következnek.
Lássuk hogyan is néznek ezek ki.
Nos nem túl szépen.
Leginkább talán tapétamintának használhatnánk őket.
A vizuális élvezetek után most a trigonometriai képletek özönvízszerű áradata következik.
Csak a legfontosabb egymillió darab képletet nézzük meg.
A LEGFONTOSABB TRIGONOMETRIAI ÖSSZEFÜGGÉSEK
Itt az egység sugarú körben van egy derékszögű háromszög,
amire felírjuk a Pithagorasz-tételt.
Nos talán ez a legfontosabb trigonometriai összefüggésünk.
Van ennek két mutáns változata is.
Most pedig újabb bűvészkedések következnek az egységsugarú körben.
És itt jön még néhány.
Minden függvény egy hozzárendelés, aminek az inverze, ha az egyáltalán létezik, az fordított hozzárendelés.
Az inverz kiszámolásának menete a következő:
Legyen mondjuk
Előszöris írjuk a függvényt y=izé alakban:
Itt x-hez rendelünk y-t.
Az inverz a fordított hozzárendelés, ahol y-hoz rendelünk x-et, ezért a cél mindig az, hogy az Y=izét x=bigyó alakra rendezzük.
Végül x-et és y-t kicseréljük (van aki nem) és így kapjuk az inverzt:
Az inverz jele:
Van azonban egy kis gond. Nem minden függvénynek van inverzze, ugyanis nem minden függvénynél fordítható meg a hozzárendelés.
Például az függvény esetében és amit megfordítani nem tudunk: .
A gond azzal van, hogy ez a függvény két különböző számhoz (a 2-höz és a -2-höz is) ugyanazt a számot rendeli és emiatt a hozzárendelés nem fordítható meg.
De ha a negatív számokat kiiktatjuk,
nos akkor már minden rendben.
Inverze tehát csak azon függvényeknek van, amik két különböző x-hez
különböző y-okat rendelnek.
Ezt úgy mondjuk, hogy kölcsönösen egyértelműek, vagy kicsit rövidebben injektívek.
Az függvény injektív, ha akkor .
Minden szigorúan monoton függvény injektív és így invertálható.
És van itt még egy dolog.
Legyen a függvényünk az és értelmezési tartománya .
Nos, ekkor az értékkészlete .
Az inverz függvény a fordított hozzárendelés, tehát ilyenkor ezek fölcserélődnek.
Ha invertálható, akkor az értelmezési tartománya megegyezik az inverzének értékkészletével, és értékkészlete az inverz értelmezési tartományával.
Nézzünk néhány példát.
Adjuk meg az függvény inverzét, ha
Nincs inverz, mert a függvény nem injektív.
Például 4-hez és -4-hez is ugyanazt rendeli, éppenséggel 0-t.
Ebben az esetben viszont egészen más a helyzet, itt ugyanis x csak pozitív lehet. Márpedig nincs két pozitív szám, aminek a négyzete ugyanaz, így a függvény injektív.
Lássuk az inverzt
Ebben az esetben is van inverz, mert a függvény injektív.
Lássuk az inverzt!
Ebben az esetben a függvénynek nincs inverze, mert ezúttal sem injektív, például 4-hez és -4-hez is megint ugyanazt rendeli, 0-t.
Sajna ilyenkor sincs inverz, mert a függvény nem injektív.
Lássunk még egyet.
Van itt ez a függvény, keressük az inverzét.
és
Végül nézzük meg ezt is.
Beszéljünk egy kicsit az inverz geometriai jelentéséről.
Van itt egy függvény
és nézzük meg, mi történik a függvény grafikonjával, amikor invertáljuk.
Nos ez.
Tükrözzük a függvénygrafikonját az y=x egyenletű egyenesre.
A rajzon az is remekül látszik, hogy a gyökös függvények inverze sosem a teljes paraola, mindig csak a fele.
És ez fordítva is igaz: a teljes parabolát sosem tudjuk invertálni, mindig csak a felét.
Itt jön aztán egy másik remek függvény az
Nos ennek a függvénynek az inverze az
Az exponenciális függvények inverzei a logaritmusfüggvények.
És ez kölcsönös, tehát a logaritmusfüggvények inverzei az exponenciális függvények.
Nézzük meg például ennek az inverzét:
A kitevőből úgy tudjuk x-et előcsalogatni, hogy vesszük mindkét oldal logaritmusát.
Vagy itt van például egy másik:
Az és az szintén egymás inverzei.
Vigyázni kell ezzel az inverz függvény számolással, nagy mennyiségben ugyanis ártalmas lehet.
De talán egy még belefér…
Minden függvény egy hozzárendelés, aminek az inverze, ha az egyáltalán létezik, az fordított hozzárendelés.
Az inverz kiszámolásának menete a következő:
Legyen mondjuk
Előszöris írjuk a függvényt y=izé alakban:
Itt x-hez rendelünk y-t.
Az inverz a fordított hozzárendelés, ahol y-hoz rendelünk x-et, ezért a cél mindig az, hogy az Y=izét x=bigyó alakra rendezzük.
Végül x-et és y-t kicseréljük (van aki nem) és így kapjuk az inverzt:
Az inverz jele:
Van azonban egy kis gond. Nem minden függvénynek van inverzze, ugyanis nem minden függvénynél fordítható meg a hozzárendelés.
Például az függvény esetében és amit megfordítani nem tudunk: .
A gond azzal van, hogy ez a függvény két különböző számhoz (a 2-höz és a -2-höz is) ugyanazt a számot rendeli és emiatt a hozzárendelés nem fordítható meg.
De ha a negatív számokat kiiktatjuk,
nos akkor már minden rendben.
Inverze tehát csak azon függvényeknek van, amik két különböző x-hez
különböző y-okat rendelnek.
Ezt úgy mondjuk, hogy kölcsönösen egyértelműek, vagy kicsit rövidebben injektívek.
Az függvény injektív, ha akkor .
Minden szigorúan monoton függvény injektív és így invertálható.
És van itt még egy dolog.
Legyen a függvényünk az és értelmezési tartománya .
Nos, ekkor az értékkészlete .
Az inverz függvény a fordított hozzárendelés, tehát ilyenkor ezek fölcserélődnek.
Ha invertálható, akkor az értelmezési tartománya megegyezik az inverzének értékkészletével, és értékkészlete az inverz értelmezési tartományával.
Nézzünk néhány példát.
Adjuk meg az függvény inverzét, ha
Nincs inverz, mert a függvény nem injektív.
Például 4-hez és -4-hez is ugyanazt rendeli, éppenséggel 0-t.
Ebben az esetben viszont egészen más a helyzet, itt ugyanis x csak pozitív lehet. Márpedig nincs két pozitív szám, aminek a négyzete ugyanaz, így a függvény injektív.
Lássuk az inverzt
Ebben az esetben is van inverz, mert a függvény injektív.
Lássuk az inverzt!
Ebben az esetben a függvénynek nincs inverze, mert ezúttal sem injektív, például 4-hez és -4-hez is megint ugyanazt rendeli, 0-t.
Sajna ilyenkor sincs inverz, mert a függvény nem injektív.
Lássunk még egyet.
Van itt ez a függvény, keressük az inverzét.
és
Végül nézzük meg ezt is.
Beszéljünk egy kicsit az inverz geometriai jelentéséről.
Van itt egy függvény
és nézzük meg, mi történik a függvény grafikonjával, amikor invertáljuk.
Nos ez.
Tükrözzük a függvénygrafikonját az y=x egyenletű egyenesre.
A rajzon az is remekül látszik, hogy a gyökös függvények inverze sosem a teljes paraola, mindig csak a fele.
És ez fordítva is igaz: a teljes parabolát sosem tudjuk invertálni, mindig csak a felét.
Itt jön aztán egy másik remek függvény az
Nos ennek a függvénynek az inverze az
Az exponenciális függvények inverzei a logaritmusfüggvények.
És ez kölcsönös, tehát a logaritmusfüggvények inverzei az exponenciális függvények.
Nézzük meg például ennek az inverzét:
A kitevőből úgy tudjuk x-et előcsalogatni, hogy vesszük mindkét oldal logaritmusát.
Vagy itt van például egy másik:
Az és az szintén egymás inverzei.
Vigyázni kell ezzel az inverz függvény számolással, nagy mennyiségben ugyanis ártalmas lehet.
De talán egy még belefér…
Az x2 függvény grafikonja egy parabola.
A parabola csúcsa az origóban van.
Nézzük, mi történik akkor…
ha itt a zárójelen belül levonunk 3-at.
Ennek hatására a parabola eltolódik 3-mal...
A parabola csúcsa mindig oda tolódik,
ahol ez nulla.
Ez pedig akkor nulla, ha x=3.
Ebből tehát látjuk, hogy 3-mal tolódik el…
és azt is látjuk, hogy az x tengelyen.
Olyankor, amikor a 3-at így vonjuk le…
egészen más dolog történik.
Ilyenkor az y tengelyen tolódik 3-mal lefelé.
Az izgalmak növelése érdekében most nézzük, mi van akkor, ha ezt a két dolgot egyszerre csináljuk…
Kezdjük ezzel a résszel itt…
Aztán itt van még ez is.
Ezt úgy hívjuk, hogy belső függvény-transzformáció.
És úgy működik, hogy az x tengely mentén tolja el a függvény grafikonját.
A külső függvény-transzformáció a zárójelen kívül van itt.
Ez pedig az y tengelyen tolja el a függvényt.
Hogyha itt van például ez a függvény:
A belső transzformáció miatt az x tengely mentén eltolódik…
Egészen pontosan ide.
Az y tengely mentén pedig ide.
Most nézzük, mi a helyzet ezzel:
Ez pontosan ugyanúgy néz ki, mint az x2, csak éppen a kétszeresére nyújtva.
Az is megeshet, hogy a háromszorosára nyújtjuk…
Vagy éppen a mínusz kétszeresére.
És az is előfordulhat, hogy egyetlen függvényben minden eddigi rémség egyszerre van benne.
Végül itt jön még ez is:
De szenvedéseink tovább folytatódnak…
Néhány izgalmas kísérletet fogunk elvégezni a függvény segítségével.
Ha a elé írunk egy mínusz jelet, akkor ezzel a függvény grafikonját az x tengelyre tükrözzük.
Hogyha pedig belülre rakjuk a mínuszjelet, akkor az y tengelyre tükrözzük.
És ha kedvünk van, tükrözhetjük a függvényt
mindkét tengelyre is.
Lássuk, hogyan néz ki például ez…
A gyökjel előtt nincsen mínuszjel…
Itt belül az x előtt viszont igen.
Na persze még el is van tolva…
Megnézzük, hogy ez itt belül mikor nulla…
Úgy néz ki, hogy 4-gyel tolódik el az x tengelyen.
2-vel pedig fölfelé.
És talán még egy utolsó nem árthat meg:
A parabolát is pontosan ugyanígy tudjuk tükrözni a tengelyekre.
Hogyha az x2 elé írjuk a mínusz jelet, akkor a függvény grafikonját az x tengelyre tükrözzük.
Hogyha pedig a zárójelen belülre rakjuk a mínuszjelet, akkor az y tengelyre tükrözzük.
Csak sajnos ez nem igazán látszik…
mert a parabola az y tengelyre szimmetrikus.
Ezért is végeztük az iménti kísérleteinket a függvényen.
De azért így a végén még nézzük meg ezt:
Hát így kezdetnek ennyit a függvény-transzformációkról.