Minden olyan függvényt, ami az $y$ tengelyre szimmetrikus, páros függvénynek hívunk. Ezek a függvények azt tudják, hogy bármely $x$-re amelyre értelmezve vannak:
\( f(-x) = f(x) \)
Azokat a függvényeket, amelyek az origóra szimmetrikusak, páratlan függvénynek nevezzük. A páratlan függvények úgy működnek, hogy bármely $x$-re amelyre értelmezve vannak:
\( f(-x) = - f(x) \)
Mikor páros, mikor páratlan vagy éppen egyik sem egy függvény.
Ábrázoljuk a következő függvényeket.
\( f(x)=x^2 \)
\( f(x)=x^3 \)
\( f(x)=x^4 \)
\( f(x)=x^5 \)