Kalkulus
A kurzus 14 szekcióból áll: Lineáris egyenletrendszerek, Mátrixok és vektorok, A determináns, Sorozatok, Függvényhatárérték és folytonosság, Elemi függvények, Komplex számok, Deriválás, Érintő egyenlete, L'Hospital szabály, Taylor polinom és Taylor sor, Szélsőértékfeladatok, egyszerűbb függvényvizsgálatok, Teljes függvényvizsgálat, Határozatlan integrál, primitív függvény, Határozott integrálás
Lineáris egyenletrendszerek
- -
Egy egyenletrendszer együtthatómátrixa az x-ek együtthatóiból álló mátrix.
- -
Az egyenletrendszer megoldásának egy szuper, de koránt sem a legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Ha egy egyenletrendszernek több az ismeretlene, mint ahány egyenlete van, akkor az egyenletrendszernek nincs egyértelmű megoldása.
- -
Ha egy egyenletrendszerben két olyan egyenlet szerepel, ahol az ismeretlenek együtthatói megegyeznek, de más az eredményük, akkor az ellentmondó egyenletrendszer, aminek nincs megoldása.
- -
A szabadságfok a szabadváltozók száma.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
Mátrixok és vektorok
- -
- -
Ha egy mátrixot egy számmal szorzunk, akkor a mátrix összes elemét meg kell szorozni a számmal.
- -
Ha egy mátrixot osztunk egy számmal, akkor a mátrix minden elemét osztani kell a számmal.
- -
Két mátrix összeadásakor összeadjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet összeadni, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix kivonásakor kivonjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet kivonni egymásból, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix szorzata akkor létezik, ha a bal oldali mátrix oszlopainak száma megegyezik a jobb oldali mátrix sorainak számával. Az eredménymátrix i-edik sorának j-edik elemét úgy kapjuk, hogy a bal oldali mátrix i-edik sorát skalárisan szorozzuk a jobb oldali mátrix j-edik oszlopával. (Tehát az első elemet az elsővel, a másodikat a másodikkal stb. szorozzuk, majd összeadjuk)
- -
A mátrix összeadás kommutatív és asszociatív.
- -
A mátrixszorzás nem kommutattív, de asszociatív.
- -
A kvadratikus mátrix négyzetes mátrix vagyis ugyanannyi sora van, mint oszlopa.
- -
A diagonális mátrix olyan kvadratikus mátrix, aminek a főátlóján kívüli elemek nullák.
- -
Az egységmátrixok olyan diagonális mátrixok, aminek minden főátló-eleme egy.
- -
Az inverz mátrix egy olyan mátrix, hogy ha azzal szorozzuk az eredeti mátrixot, akkor egységmátrixot kapunk. Ha balról szorozva kapunk egységmátrixot, akkor bal inverz, ha jobbról szorozva, akkor jobb inverz mátrix.
- -
A transzponált a mátrix sorainak és oszlopainak felcserélése.
- -
Azokat a mátrixokat, melyek transzponáltjuk önmaga, szimmetrikus mátrixnak nevezzük.
- -
Vektort egy számmal úgy szorzunk, hogy a vektor minden koordinátáját megszorozzuk a számmal.
- -
Vektort egy számmal úgy osztunk, hogy a vektor minden koordinátáját leosztjuk a számmal.
- -
Két vektort úgy adunk össze, hogy minden egyes koordinátájukat külön-külön össze adjuk.
- -
Két vektort úgy vonunk ki egymásból, hogy minden egyes koordinátájukat külön-külön kivonjuk egymásból.
- -
A skaláris szorzat két vektor közti művelet, ami csinál belőlük egy számot.
- -
Két vektor diadikus szorzata egy mátrix. Lássuk milyen.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak sorait.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak egy oszlopában lévő elemeit.
- -
Ha egy mátrixot megszorzunk jobbról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik oszlopát.
- -
Ha egy mátrixot megszorzunk balról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik sorát.
A determináns
- -
A determináns úgy működik, hogy minden négyzetes mátrixból csinál egy valós számot. Hogy miért, és, hogy hogyan, az mindjárt kiderül.
- -
Egy 2x2-es mátrix determinánsát úgy kapjuk, hogy a bal átló elemeinek szorzatából kivonjuk a jobb átló elemeinek szorzatát.
- -
Egy nem túl jó módszer a determináns kiszámolására.
- -
Egy túl jó módszer a determináns kiszámolására.
- -
Példák mikor nulla egy mátrix determinánsa. Két mátrix szorzatának determinánsa.
- -
Azokat a mátrixokat nevezzük szingulárisnak, amelyek determinánsa nulla.
- -
Azokat a mátrixokat nevezzük regulárisnak, amelyek determinánsa nem nulla.
- -
A Cramer szabály egy újabb módszer az egyenletrendszerek megoldására.
Sorozatok
- -
Nevezetes 0-hoz tartó sorozatok.
- -
Nevezetes végtelenhez tartó sorozatok.
- -
Nevezetes gyökös sorozatok határértéke.
- -
Exponenciális kifejezések határértéke.
- -
Egy nevezetes sorozatcsalád, az e-hez tartó sorozatok.
- -
Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük. Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük. Az ugráló sorozatokat oszcillálónak nevezzük. Lássunk néhány példát.
- -
Ha két rendőr közrefog egy honpolgárt és a két rendőr konvergál a rendőrőrsre, akkor az általuk közrefogott honpolgárnak is szükségképpen konvergálnia kell a rendőrőrsre..
- -
- -
A végtelenbe tartó sorozatok nagyságrendi sorrendje azt mondja meg, hogy melyik sorozat milyen ütemben tart a végtelenbe. Minél nagyobb nagyságrendű egy sorozat, annál gyorsabban tart a végtelenbe
- -
Egy sorozatnak torlódási pontja az A szám, ha bármilyen kis környezetében a sorozatnak végtelen sok tagja van.
- -
Egy sorozat limesz inferiorja a torlódási pontjainak infinuma. A limesz szuperiorja a torlódási pontjainak szuprémuma.
Függvényhatárérték és folytonosság
- -
Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.
- -
Függvények szakadása négy féle lehet: megszüntethető szakadás, ugrás, nem megszüntethető, nem véges szakadás, nem megszüntethető oszcilláló szakadás.
Elemi függvények
- -
A függvény értékkészlete azoknak az elemeknek a halmaza a B halmazban, amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.
- -
Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.
- -
Megnézzük, hogy melyik függvény hogyan néz ki, aztán megnézzük a külső és belső függvénytranszformációkat. Eltolás az x tengely mentén, eltolás az y tengely mentén, tükrözés, nyújtás.
- -
A függvény monotonitása lehet növekedő, csökkenő, szigorúan monton növekedő vagy szigorúan monoton csökkenő.
- -
Globális és lokális maximumok és minimumok.
- -
A függvény konvexitása megmondja, hogy a függvény szomorú vagy vidám hangulatban van.
- -
Mikor páros, mikor páratlan vagy éppen egyik sem egy függvény.
- -
Lássuk mik azok a polinomfüggvények, és hogyan kell őket ábrázolni.
Komplex számok
- -
Komplex számok összeadásakor összeadjuk a valós részeket és külön összeadjuk a képzetes részeket. Kivonáskor külön kivonjuk egymásból a valós részeket és a képzetes részeket.
- -
Egy képlet az a+bi alakú komplex számok szorzásához.
- -
A komplex számok egy valós és egy imaginárius (képzetes) számból épülnek föl. A valós számok a szokásos x tengelyen helyezkednek el, míg az imaginárius számok egy erre merőleges y tengelyen, amit imaginárius tegelynek, vagy képzetes tengelynek nevezünk.
- -
Olyan számok, amelyek valós és képzetes részből épülnek fel.
- -
A valós számokat úgy érdemes elképzelni, mint egy koordinátarendszer x tengelyét. És minden helyet ki is töltenek a valós számok ezen a számegyenesen. A komplex számok egy valós és egy imaginárius (képzetes) részből épülnek föl, és szemléltetésükhöz nem egy, hanem két koordinátatengelyre van szükség. Az x tengelyen vannak a valós számok, az y tengelyen pedig az imaginárius, vagyis a képzetes számok. A valós számok tengelyén az egység a szokásos 1, míg az imaginárius számok tengelyén az egység az i. A kétb tengely által kifeszített síkot nevezzük komplex számsíknak, vagy másknt Gauss-féle számsíknak.
- -
A komplex szám tükörképe az x tengelyre.
- -
Egy komplex szám abszolútértéke az origotól mért távolsága.
- -
A komplex számok osztását, szorzását és hatványozását megkönnyítő forma.
- -
Képlet komplex számok szorzásához és osztásához, ha azok trigonometrikus alakban vannak megadva.
- -
Egy képlet komplex számok hatványozásához, ha a komplex szám trigonometrikus alakban van.
- -
Egy képlet komplex számok gyökvonásához, ha a komplex szám trigonometrikus alakban van.
- -
Képlet komplex számok szorzásához és összeadásához, ha a komplex számok exponenciális alakban vannak megadva.
- -
Egy képlet komplex számok hatványozásához, ha a komplex szám exponenciális alakban van.
- -
Egy képlet komplex számok gyökvonásához, ha a komplex szám exponenciális alakban van.
Deriválás
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.
- -
Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.
- -
A lánc-szabály az összetett függvények deriválási szabálya.
Érintő egyenlete, L'Hospital szabály
- -
A függvény érintője egy olyan egyenes, amely egy függvényt pontosan egy pontban érint.
- -
A határérték számítás csodafegyvere, egy szuper módszer, amivel nagyon sok bonyolult határérték gyorsan kiszámolható.
- -
Néhány exponenciális, logaritmusos és végtelenhez, nullához tartó nevezetes sorozatok határértékei.
Taylor polinom és Taylor sor
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Az $e^x$, lnx, sinx és cosx függvények Taylor sorai.
- -
Amikor egy függvény x helyen lévő értékét szeretnénk közelíteni egy Taylor polinommal, akkor lesz egy kis hibánk, mivel a polinom nem teljesen követi a függvényt. Ennek a hibának a kifejezésére van a Lagrange-féle maradéktag.
- -
A végtelen sorok egy speciális fajtája.
Teljes függvényvizsgálat
- -
Az első derivált azt írja le, hogy a függvény mikor nő és mikor csökken.
- -
A második derivált a függvény hangulatát írja le, ha pozitív, akkor a függvény vidám, ha negatív, akkor szomorkodik.
- -
A deriválás után megállapítjuk a derivált előjelét. Amikor a derivált nulla, olyankor stacionárius pont van.
- -
Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.
Határozatlan integrál, primitív függvény
- -
Az f(x) függvény primitív függvényének jele F(x) és azt tudja, hogy ha deriváljuk, akkor visszakapjuk f(x)-et. Egy függvény primitív függvényeinek halmazát nevezzük a függvény határozatlan integráljának.
- -
Polinomok integrálása. Törtfüggvény integrálása. Exponenciális függvények integrálása. Trigonometrikus függvények integrálása.
- -
Polinomok, törtfüggvény, exponenciális függvények, trigonometrikus függvények integráljainak lineáris helyettesítései.
- -
Integráláskor a konstans szorzó kivihető.
- -
Összeget külön-külön is integrálhatunk.
- -
Ha a szorzás elvégezhető, akkor végezzük el, és utána integráljunk.
- -
Szorzat integrálásának egy speciális esete, amikor a függvény n-edik hatványon van és meg van szorozva a deriváltjával.
- -
Ezzel a remek módszerrel szorzatokat tudunk integrálni úgy, hogy egy bonyolultabb integrálásból csinálunk egy egyszerűbb integrálást.
- -
Összetett függvényeket általában akkor tudunk integrálni, ha azok meg vannak szorozva a belső függvényük deriváltjával. Van is erre egy remek kis képlet.
- -
Próbálkozzunk a tört földarabolásával és utána integráljunk.
- -
Törtek integrálásának egy speciális esete, amikor a tört számlálója a nevező deriváltja.
- -
A helyettesítéses integrálás lényege, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk majd megoldani a feladatot.
- -
A helyettesítéses integrálás lényege, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk majd megoldani a feladatot.
- -
A helyettesítéses integrálás úgy működik, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk megoldani a feladatot.
A helyettesítéses integrálás egyik legfurcsább esete az $u = \tan{ \frac{x}{2} } $. Olyankor használjuk, ha a törtben $\sin{x}$ és $\cos{x}$ is csak első fokon szerepel.
- -
A racionális törtfüggvények integrálásához a függvényeket parciális törtekre kell bontani, majd a parciális törteket egyesével integrálni.
Határozott integrálás
- -
A Newton-Leibniz formula egy egyszerűen használható képlet a határozott integrál kiszámításához. Ez a tétel az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- -
Egy zárt intervallumon értelmezett függvény akkor Riemann integrálható, ha egyetlen olyan szám létezik, amely bármely alsó közelítő összegénél nagyobb egyenlő, és bármely felső közelítő összegénél kisebb egyenlő.
- -
Végtelenbe nyúló tartományok területének kiszámolása egy fontos függvénnyel.
- -
Forgástestek térfogatának és felszínének képletei határozott integrálással.