- Halmazok, rendezett párok, leképezések, matematikai logika
- Komplex számok
- Mátrixok és vektorok
- Vektorterek, független és összefüggő vektorok
- Vektorok, egyenesek és síkok egyenletei
- Lineáris egyenletrendszerek, mátrixok rangja és inverze
- Egy kis geometria
- Függvények
- Összetett függvény és inverz függvény
- Sorozatok határértéke
- Küszöbindex és monotonitás
- Függvények határértéke és folytonossága
- A határérték precíz definíciója
- Deriválás
- Differenciálhatóság vizsgálata és az érintő egyenlete
- Polinomok
- Interpolációs polinomok
- Taylor polinom és Taylor sor
- L’Hospital szabály
- Könnyű függvényvizsgálat és szélsőértékfeladatok
- Teljes függvényvizsgálat, gazdasági feladatok
- Határozatlan integrálás, primitív függvény
- Mátrix determinánsa, Cramer-szabály, adjungált
- Határozott integrálás
- Sorok
- Rekurzív sorozatok
Könnyű függvényvizsgálat és szélsőértékfeladatok
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x)=x^4 - 4x^3 \)
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x)=x^3 - 3x \)
Határozzuk meg az $a, b, c$ valós paramétereket úgy, hogy az $f(x)=ax^3+bx^2+cx+28$ függvénynek $x=2$-ben zérushelye, $x=-4$-ben lokális maximumhelye, $x=-1$-ben pedig inflexiós pontja legyen!
a) Egy vasúti alagút építése során minél mélyebbre helyezik a nyomvonalat, annál hosszabb alagutat kell fúrni és maga az építkezés is egyre drágább lesz. Az eredetileg kijelölt nyomvonal 340 méteres tengerszintfeletti magasságban halad és az építési költség 5,6 milliárd svájci frank. A nyomvonal $x$ méterrel mélyebbre helyezése az eredeti költséget ennyivel növeli: $a(x)=40x^4+160x^3$ frank.
A mélyebben futó nyomvonalnak az előnye, hogy az áthaladó vonatoknak a hegységben történő átkelés során kisebb szintkülönbséget kell megtenniük. Ennek évenkénti gazdasági haszna: $p(x)=80x^3$ frank.
Hogyha az alagút átadását követő 40 éves periódust vizsgálunk, hány méterrel lenne érdemes mélyebbre helyezni a nyomvonalat, hogy a lehető legnagyobb legyen a megtérülés?
b) Egy termék árbevétel függvénye $R(x)=12400x^2-4000x^3$, a költségfüggvénye pedig $C(x)=400x^2+2000$, ahol $x$ a termék ára dollárban. Milyen egységár esetén maximális a profit és mekkora ez a profit?
a) Egy termék keresleti függvénye
\( f(x)=20000x^2-1000x^3-72000x \)
ahol $x$ a termék árát jelöli euróban. Milyen ár esetén maximális az árbevétel?
b) Egy másik termék keresleti függvénye
\( f(x)=260x^3-11x^4 \)
ahol $x$ a termék árát jelöli euróban.
A termék fajlagos költsége (tehát az egy termékre jutó költség) 12 euró. Milyen ár esetén lesz maximális a profit?
Egy 33x18 cm-es kartonlapból téglatest alakú dobozt készítünk. A doboz kiterített hálója és méretei itt láthatóak.
a) Mekkora a doboz térfogata, ha $a=7$ cm?
b) Hogyan kell megválasztani az $a, b, c$ élek hosszát ahhoz, hogy a doboz térfogata maximális legyen?
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x)=x^3+3x^2 \)
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x)=x^4-18x^2+17 \)
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x)=x^3-5x^2+3x-7 \)
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x)=2x^6-6x^4+\sqrt{37} \)
Egy sorsjegyből havonta átlagosan 5000 darabot értékesítenek. Egy darab sorsjegy ára 500 Ft, de ezt csökkenteni szeretnék. A sorsjegy ára 10 Ft-os lépésekben csökkenthető. Ha az ár $n$-szer 10 Ft-tal alacsonyabb lesz, akkor havonta $10n^2$-tel több sorsjegyet tudnak eladni ( $n \in N^{+}$ ). Mi az az $n$ érték, amelyre a sorsjegyek eladásából származó havi bevétel maximális?
Vizsgáljuk meg az alábbi függvény monotonitását. Adjuk meg, hol vannak a függvénynek lokális szélsőérték pontjai.
\( f(x)=\frac{2}{3}x^3 + \frac{7}{2}x^2-4x+\frac{2}{3} \)
Vizsgáljuk meg az alábbi függvény konvexitását. Hol konvex és konkáv a függvény? Adjuk meg, hol vannak a függvénynek inflexiós pontjai.
\( f(x)=e^x \cdot \left( x^2-3x+2 \right) \)
Vizsgáljuk meg a $g(x)=x^4 + 6x^3 - 60 x^2+ 15x-22$ függvény konvexitását. Hol konvex és konkáv a függvény? Adjuk meg, hol vannak a függvénynek inflexiós pontjai.
Vizsgáljuk meg az alábbi függvény konvexitását. Hol konvex és konkáv a függvény? Adjuk meg, hol vannak a függvénynek inflexiós pontjai.
\( f(x)=\frac{x^4}{4} - x^3 - \frac{9x^2}{2} -6x + \frac{1}{4} \)
Vizsgáljuk meg az alábbi függvény konvexitását. Hol konvex és konkáv a függvény? Adjuk meg, hol vannak a függvénynek inflexiós pontjai.
\( f(x) = \frac{x^4}{12} + \frac{2x^3}{3} - \frac{5x^2}{2} + 2x + \pi \)
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x) = x^3 - 12x \)
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x) = x^3 - 3x^2 \)
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x) = -x^3 + 3x^2 \)