- Mátrixok és vektorok
- Vektorterek, független és összefüggő vektorok
- Vektorok, egyenesek és síkok egyenletei
- Lineáris egyenletrendszerek, mátrixok rangja és inverze
- Mátrix determinánsa, Cramer-szabály, adjungált
- Halmazok, rendezett párok, leképezések, matematikai logika
- Komplex számok
- Függvények
- Összetett függvény és inverz függvény
- Sorozatok határértéke
- Monotonitás és korlátosság
- Függvények határértéke és folytonossága
- A határérték precíz definíciója
- Deriválás
- Differenciálhatóság vizsgálata és az érintő egyenlete
- Taylor polinom és Taylor sor
- L’Hospital szabály
- Könnyű függvényvizsgálat és szélsőértékfeladatok
- Teljes függvényvizsgálat, gazdasági feladatok
- Határozatlan integrálás, primitív függvény
- Határozott integrálás
- Konvergencia és divergencia definíciója, küszöbindex keresése
- Sorok
- Többváltozós függvények, parciális deriválás, szélsőértékvizsgálat
- Polinomok
- Interpolációs polinomok
- Rekurzív sorozatok
Monotonitás és korlátosság
Sorozatok monotonitása
Az $a_n$ sorozat szigorúan monoton nő, ha $0<a_{n+1}-a_n$.
Az $a_n$ sorozat szigorúan monoton csökken, ha $0>a_{n+1}-a_n$.
Az $a_n$ sorozat monoton nő, ha $0\leq a_{n+1}-a_n$.
Az $a_n$ sorozat monoton csökken, ha $0 \geq a_{n+1}-a_n$.
Vizsgáljuk meg az alábbi sorozatok monotonitását.
a) \( a_n = \frac{6n+7}{2n+1} \)
b) \( a_n = \frac{2n+1}{5n+7} \)
c) \( a_n = \frac{4n^2+7}{3n^2+1} \)
d) \( a_n = \frac{2n^2-3n+6}{n^2+4} \)
Vizsgáljuk meg az alábbi sorozatok monotonitását és korlátosságát.
a) \( a_n = \frac{6n+1}{2n+7} \)
b) \( a_n = (-1)^n \frac{2n^2+5}{n^2+1} \)
c) \( a_n = (-1)^n \frac{5^{n+1}+3}{5^n+7} \)
Vizsgáljuk meg az alábbi sorozatok monotonitását és korlátosságát.
a) \( a_n = \frac{3n^2-7}{2n^2+5} \)
b) \( a_n = \frac{n^2+n}{2n^2+1} \)
Vizsgáljuk meg az alábbi sorozatok monotonitását és korlátosságát.
a) \( a_n = (-1)^n \frac{n+1}{n^2+1} \)
b) \( a_n = (-1)^n \frac{3n+2}{n+3} \)
Vizsgáljuk meg az alábbi sorozatok monotonitását és korlátosságát.
a) \( a_n = (-1)^n \frac{3n+5}{n+1} \)
b) \( a_n = (-1)^n \frac{5}{n^2+1} \)
Vizsgáljuk meg az alábbi sorozatok monotonitását és korlátosságát.
a) \( a_n = \frac{3n^3+8}{2n^3+13} \)
b) \( a_n =\frac{4^{n+1}-1}{2^{2n}} \)
Vizsgáljuk meg az alábbi sorozat monotonitását és korlátosságát.
\( a_n = \frac{7n^2-1}{7n^2+1} \)
Vizsgáljuk meg az alábbi sorozatok monotonitását és korlátosságát.
a) \( a_n = \frac{4^{n+1}-5}{2^{2n+1}+1} \)
b) \( a_n =\frac{2^{2n+1}}{4^{n+1}+3 } \)
Mennyi lesz az $\epsilon = 0,01$-hoz tartozó $n_0$, ha
\( a_n = \frac{3n+2}{5n-1} \)
Mennyi lesz az $\epsilon = 0,01$-hoz tartozó $n_0$, ha
\( a_n = \frac{2n^2+5}{n^2-3} \)
A sorozatok monotonitásának vizsgálata valóban elég monoton elfoglaltság lesz.
Szóval ne sok izgalomra számítsunk…
Egy sorozat szigorúan monoton növekedő, ha bármelyik tagja nagyobb az előtte lévő tagnál.
Szigorúan monoton csökkenő, ha bármelyik tagja kisebb az előtte lévő tagnál.
Monoton növekedő, ha bármelyik tagja nagyobb vagy egyenlő az előtte lévő tagnál.
És monoton csökkenő, ha bármelyik tagja kisebb vagy egyenlő az előtte lévő tagnál.
Itt van például egy sorozat, és vizsgáljuk meg a monotonitását.
Nos ez elég rémes lesz.
2.1.
A jelek szerint tehát szigorúan monoton nő.
Ugyanezt kideríthetjük egy trükk segítségével is.
Épp itt is jön:
Itt picit álljunk meg gondolkodni.
Mi történik, ha a 4-et egyre nagyobb számokkal osztjuk?
Nos ez.
Nézzünk meg egy másikat is.
A sorozat szigorúan monoton nő.
Lássuk, hogyan jön ez ki a trükk segítségével is:
Jön megint a gondolkodás.
Mi történik, ha a 9/5-öt egyre nagyobb számokkal osztjuk?
A mínusz jellel együtt viszont már szigorúan monoton nő.
És így az egész sorozat is szigorúan monoton nő.
Itt jön aztán egy érdekesebb eset:
Ha akkor a számláló éppen nulla.
Ha akkor pozitív.
Tehát a sorozat monoton nő.
Lássuk, hogyan működik itt a trükk:
Nos, sehogy.
Az okozza a problémát, hogy egyszerre és is szerepel és sajna ilyenkor a trükk nem működik…
Vannak aztán olyan sorozatok is, amelyek nem monotonok.
Sajnos ettől még nem mondható el róluk, hogy izgalmasak volnának.
Itt van például egy ilyen.
Az ilyen sorozatokat oszcilláló sorozatoknak nevezzük.
Ez a sorozat például a nulla körül oszcillál:
ha n páratlan
ha n páros
Mi jöhet még ez után…