Skaláris szorzat kétféle alakja | mateking
 

Skaláris szorzat kétféle alakja

Két vektor skaláris szorzatát kiszámolhatjuk így:

\( \underline{a} \cdot \underline{b} = \mid \underline{a} \mid \cdot \mid \underline{b} \mid \cdot \cos{\gamma} \)

ahol $\gamma$ a két vektor által bezárt szög,

$ \mid \underline{a} \mid = \sqrt{a_1^2+a_2^2 }$, vagyis az $\underline{a}$ vektor hossza

$ \mid \underline{b} \mid = \sqrt{b_1^2+b_2^2 }$, vagyis az $\underline{b}$ vektor hossza

Illetve kiszámolhatjuk így is:

\( \underline{a} \cdot \underline{b} = a_1 \cdot b_1 + a_2 \cdot b_2 \)