- Komplex számok
- Vektorok, egyenesek és síkok egyenletei
- Függvények
- Az inverzfüggvény
- Sorozatok
- Küszöbindex és monotonitás
- Sorok
- Függvények határértéke és folytonossága
- Deriválás
- Differenciálhatóság vizsgálata és az érintő egyenlete
- Könnyű függvényvizsgálat és szélsőértékfeladatok
- Függvényvizsgálat, gazdasági feladatok
- L’Hospital szabály, Taylor sor, Taylor polinom
- Határozatlan integrálás, primitív függvény
- Határozott integrálás
Vektorok, egyenesek és síkok egyenletei
Két pont közti vektor
Két pont közti vektor a végpontba mutató helyvektor minusz a kezdőpontba mutató helyvektor.
Tehát \( \vec{AB} = \underline{b} - \underline{a} \)
Vektor hossza, két pont távolsága
Van itt az $\underline{a}=(a_1, a_2)$ és $\underline{b}=(b_1, b_2)$ vektor.
Az $\underline{a}$ vektor hossza:
\( \mid \underline{a} \mid = \sqrt{a_1^2 + a_2^2} \)
Az $ \vec{AB} $ vektor hossza:
\( \vec{AB} = \mid \underline{b} - \underline{a} \mid = \sqrt{ (b_1 - a_1)^2 + (b_2-a_2)^2 } \)
És pont ugyanígy kapjuk meg az $A$ és $B$ pontok távolságát is.
Vektorok összeadása és kivonása
Van itt két vektor: $\underline{a}=(a_1, a_2)$, $\underline{b}=(b_1,b_2)$
A két vektor összege:
\( \underline{a} + \underline{b} = (a_1 + b_1, a_2 + b_2) \)
A két vektor különbsége:
\( \underline{a} - \underline{b} = (a_1 - b_1, a_2 - b_2) \)
\( \vec{AB} = \underline{b} - \underline{a} \)
Skaláris szorzat kétféle alakja
Két vektor skaláris szorzatát kiszámolhatjuk így:
\( \underline{a} \cdot \underline{b} = \mid \underline{a} \mid \cdot \mid \underline{b} \mid \cdot \cos{\gamma} \)
ahol $\gamma$ a két vektor által bezárt szög,
$ \mid \underline{a} \mid = \sqrt{a_1^2+a_2^2 }$, vagyis az $\underline{a}$ vektor hossza
$ \mid \underline{b} \mid = \sqrt{b_1^2+b_2^2 }$, vagyis az $\underline{b}$ vektor hossza
Illetve kiszámolhatjuk így is:
\( \underline{a} \cdot \underline{b} = a_1 \cdot b_1 + a_2 \cdot b_2 \)
Vektor 90°-os forgatása
Van itt az $\underline{a}= (a_1, a_2)$ vektor.
Az $\underline{a}$ +90°-os elforgatottja:
\( a^{+90°} = (-a_2, a_1) \)
Az $\underline{a}$ -90°-os elforgatottja:
\( a^{-90°} = (a_2, -a_1) \)
Vektorok merőlegességének feltétele
Két vektor merőleges egymásra, ha skaláris szorzatuk 0, azaz ha $ \underline{a} \cdot \underline{b} = 0 $.
Vektorok skaláris szorzata
Van itt két vektor: $\underline{a}=(a_1, a_2)$, $\underline{b} = (b_1, b_2)$.
Az $\underline{a}$ és $\underline{b}$ vektorok skaláris szorzata:
\( \underline{a} \cdot \underline{b} = \mid \underline{a} \mid \cdot \mid \underline{b} \mid \cdot \cos{\gamma} = a_1 \cdot b_1 + a_2 \cdot b_2 \)
ahol $\gamma$ a két vektor által bezárt szög
$\mid \underline{a} \mid = \sqrt{a_1^2 + a_2^2} $, vagyis az $\underline{a}$ vektor hossza
$\mid \underline{b} \mid = \sqrt{b_1^2 + b_2^2} $, vagyis a $\underline{b}$ vektor hossza
Két vektor merőleges egymásra, ha $\underline{a} \cdot \underline{b} = 0$.
Egyenes egyenlete
A $P(x_0, y_0)$ ponton átmenő és $\underline{n} = \begin{bmatrix} A \\ B \end{bmatrix}$ normálvektorú egyenes egyenlete:
\( A \left( x-x_0 \right) + B \left( y-y_0 \right) = 0 \)
Egyenes egyenlete síkban
A $P(x_0,y_0)$ ponton átmenő és $\underline{n} = \begin{pmatrix} A \\ B \end{pmatrix}$ normálvektorú egyenes egyenlete:
\( A\cdot (x-x_0)+B\cdot (y-y_0)=0 \)
Két pont közti vektor
Van a síkban két pont: $P(x_1, y_1)$ és $Q(x_2, y_2)$.
Ekkor a két pont közti vektor:
\( \vec{PQ} = \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \end{bmatrix} \)
Ha a térben veszünk két pontot: $P(x_1, y_1, z_1)$ és $Q(x_2, y_2, z_2)$.
Akkor a két pont közti vektor:
\( \vec{PQ} = \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{bmatrix} \)
Két pont távolsága a koordinátarendszerben
Van itt két pont a síkban: $P(x_1,y_1)$ és $Q(x_2, y_2)$.
Ekkor a két pont közti távolság:
\( d = \sqrt{ (x_1-x_2)^2 + (y_1-y_2)^2} \)
Ha a térben veszünk két pontot: $P(x_1,y_1, z_1)$ és $Q(x_2, y_2, z_2)$.
Akkor a két pont közti távolság a térben:
\( d = \sqrt{ (x_1-x_2)^2 + (y_1-y_2)^2 + (z_1 -z_2)^2 } \)
Sík egyenlete
A $P(x_0, y_0, z_0)$ ponton átmenő és $\underline{n} = \begin{bmatrix} A \\ B \\ C \end{bmatrix}$ normálvektorú sík egyenlete:
\( A\left( x-x_0 \right) + B \left(y-y_0 \right) + C \left( z-z_0 \right) = 0 \)
Sík egyenlete
A $P(x_0, y_0, z_0)$ ponton átmenő és $\underline{n} = \begin{pmatrix} A \\ B \\ C \end{pmatrix} $ normálvektorú sík egyenlete:
\( A\cdot (x-x_0) + B \cdot (y-y_0) + C \cdot (z-z_0) = 0 \)
Két vektor vektoriális szorzata
Van itt két vektor: $\underline{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ és $\underline{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$
A két vektor vektoriális szorzata:
\( \underline{a} \times\underline{b} = \det{ \begin{bmatrix} \underline{e}_1 & \underline{e}_2 & \underline{e}_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}} \)
Vektoriális szorzat
Az $\underline{a}$ és $\underline{b}$ vektorok vektoriális szorzata az $\underline{a} \times \underline{b}$ vektor, ami merőleges az $\underline{a}$ és $\underline{b}$ vektorok által kifeszített síkra, és
\( \underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \quad \underline{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \quad \underline{a} \times \underline{b} = \det{ \begin{pmatrix} \underline{e}_1 & \underline{e}_2 & \underline{e}_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}} \)