A $P(x_0, y_0)$ ponton átmenő és $\underline{n} = \begin{bmatrix} A \\ B \end{bmatrix}$ normálvektorú egyenes egyenlete:
\( A \left( x-x_0 \right) + B \left( y-y_0 \right) = 0 \)
Az egyenes egyenletének felírásához kell egy pontja és egy normálvektora.
a) Írjuk föl a $P(7,8,9)$ ponton átmenő és $\underline{v}=\begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$ irányvektorú egyenes egyenletét.
b) Írjuk föl a $P(3,5)$ ponton átmenő és a $4x+y=6$ egyenletű egyenesre merőleges egyenes síkbeli egyenletét.
c) Írjuk föl a $P(3,5,7)$ ponton átmenő és az $ \frac{x-1}{4}=\frac{y-2}{6}=\frac{z-1}{9}$ egyenletrendszerű egyenesre merőleges sík térbeli egyenletét.
d) Írjuk föl a $P(1,1)$ és $Q(3,5)$ ponton átmenő egyenes síkbeli egyenletét.
e) Írjuk föl a $P(1,4,1)$ a $Q(3,5,7)$ és az $R(6,5,2)$ pontokon átmenő sík térbeli egyenletét.