- ÚJ! Geometriai valószínűség
- ÚJ! Gráfok izomorfiája
- ÚJ! Kvartilisek és dobozdiagram (box plot)
- ÚJ! Kamatos kamat, törlesztőjáradék, gyűjtőjáradék
- Valószínűségszámítás (15,3 pont)
- Térgeometria (12,5 pont)
- Kombinatorika (11,9 pont)
- Függvényvizsgálat, szélsőérték feladatok (11,2 pont)
- Számtani és mértani sorozatok (8,6 pont)
- Statisztika (7,3 pont)
- Az integrálás (7,1 pont)
- Szöveges feladatok (6,1 pont)
- Koordinátageometria (5,1 pont)
- Gráfok (4,8 pont)
- ***Vegyes emelt szintű feladatok***
- Exponenciális egyenletek és egyenlőtlenségek (4,7 pont)
- Exponenciális, logaritmusos és trigonometrikus egyenletrendszerek
- Síkgeometria (4,1 pont)
- Számelmélet (3,9 pont)
- Logaritmus, logaritmikus egyenletek (3,5 pont)
- Középpontos hasonlóság (3,1 pont)
- Trigonometrikus egyenletek és egyenlőtlenségek (3,1 pont)
- Szinusztétel és koszinusztétel (2,7 pont)
- A várható érték (2,6 pont)
- Függvények ábrázolása (2,5 pont)
- Deriválás (1,9 pont)
- Függvények érintője
- Trigonometria
- Sorozatok monotonitása és korlátossága
- Sorozatok határértéke
- Függvények határértéke és folytonossága
- Algebra, nevezetes azonosságok
- Abszolútértékes egyenletek és egyenlőtlenségek
- Bizonyítási módszerek, matematikai logika
- A teljes indukció
- A Pitagorasz-tétel
- Egybevágósági transzformációk
- Egyenletrendszerek
- Egyenlőtlenségek
- Hatványozás, hatványazonosságok, normálalak
- Mértékegységek és mértékegység-átváltás
- Összetett függvény, inverz függvény
- Pontok, egyenesek, síkok, szögek, a geometria alapjai
- Egyenes arányosság, fordított arányosság
- Arányos osztás, szöveges feladatok arányos osztással
- Síkidomok, háromszögek, négyszögek, sokszögek
- Számrendszerek
- Elsőfokú függvények
- Feladatok függvényekkel
- Gyökös azonosságok és gyökös egyenletek
- Halmazok
- Másodfokú egyenletek
- Százalékszámítás
- Vektorok
Függvények érintője
Szerezd meg a hiányzó tudást
2020 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2020 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2019 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2019 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2018 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2018 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2017 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2017 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2016 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2016 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2015 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
Az érintő egyenlete
A derivált geometriai jelentése a függvény grafikonjához húzott érintő meredeksége.
Az érintő egyenlete:
\( f(x) = f'(x_0) (x-x_0) + f(x_0) \)
Oldjuk meg az alábbi feladatokat:
a) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2x^3+1 \) függvényt az \( y_0=55 \) pontban érinti.
b) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=x^2-x+4 \) függvényt egy olyan pontban érinti, aminek \( x \) koordinátája negatív, \( y \) koordinátája 24.
c) Keressük annak az érintőnek az egyenletét, amely érinti az \( f(x)=x^4+5x+12 \) függvényt és párhuzamos az \( y=-27x+1 \) egyenessel.
d) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2e^{x-4}+5 \) függvényt az \( y_0=7 \) pontban érinti.
Oldjuk meg az alábbi feladatokat:
a) Van itt ez a függvény: \( f(x)=\sqrt[3]{\ln{x}+x^2} \), és keressük az érintő egyenletét az \( x_0=1 \) pontban.
b) Van itt ez a függvény: \( f(x)=\sin{(\ln{x})}+x \), és keressük az érintő egyenletét az \( x_0=1 \) pontban.
c) Van itt ez a függvény: \( f(x)=\ln{(\cos{x})}+e^{4x} \), és keressük az érintő egyenletét az \( x_0=0 \) pontban.
d) Van itt ez a függvény: \( f(x)=\arctan{x}+e^x \), és keressük az érintő egyenletét az \( x_0=0 \) pontban.
e) Van itt ez a függvény: \( f(x)=\arctan{( \ln{x} )} \), és keressük az érintő egyenletét az \( x_0=1 \) pontban.