Jump to navigation

Belépés
  • Elfelejtettem a jelszavam
Regisztráció
 
  • Hogyan működik a mateking?
  • Mire jó a matek?
  • Matek érettségi
  • Képletgyűjtemény
  • Feladatgyűjtemény
  • Rólunk
  • Matek 5. osztály próbaüzem
  • Matek 6. osztály próbaüzem
  • Matek 7. osztály próbaüzem
  • Matek 8. osztály próbaüzem
  • Matek 9. osztály
  • Matek 10. osztály
  • Matek 11. osztály
  • Matek 12. osztály
  • Középiskolai matek (teljes)
  • Középszintű matek érettségi
  • Emelt szintű matek érettségi
  • Egyetemi matek alapozó
Összes egyetemi tantárgy
Legnépszerűbb tantárgyak:
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Valószínűségszámítás
  • Lineáris algebra
  • Diszkrét matematika
  • Statisztika

mateking

Login
 

Emelt szintű matek érettségi

Kategóriák
  • Valószínűségszámítás (15,3 pont)
  • Térgeometria (12,5 pont)
  • Kombinatorika (11,9 pont)
  • Függvényvizsgálat, szélsőérték feladatok (11,2 pont)
  • Számtani és mértani sorozatok (8,6 pont)
  • Statisztika (7,3 pont)
  • Az integrálás (7,1 pont)
  • Szöveges feladatok (6,1 pont)
  • Koordinátageometria (5,1 pont)
  • Gráfok (4,8 pont)
  • ***Vegyes emelt szintű feladatok***
  • Exponenciális egyenletek és egyenlőtlenségek (4,7 pont)
  • Exponenciális, logaritmusos és trigonometrikus egyenletrendszerek
  • Síkgeometria (4,1 pont)
  • Számelmélet (3,9 pont)
  • Logaritmus, logaritmikus egyenletek (3,5 pont)
  • Középpontos hasonlóság (3,1 pont)
  • Trigonometrikus egyenletek és egyenlőtlenségek (3,1 pont)
  • Szinusztétel és koszinusztétel (2,7 pont)
  • A várható érték (2,6 pont)
  • Függvények ábrázolása (2,5 pont)
  • Deriválás (1,9 pont)
  • Függvények érintője
  • Trigonometria
  • Sorozatok monotonitása és korlátossága
  • Sorozatok határértéke
  • Függvények határértéke és folytonossága
  • Algebra, nevezetes azonosságok
  • Abszolútértékes egyenletek és egyenlőtlenségek
  • Bizonyítási módszerek, matematikai logika
  • A teljes indukció
  • Egybevágósági transzformációk
  • Egyenletrendszerek
  • Egyenlőtlenségek
  • Valószínűségszámítás
  • Elsőfokú függvények
  • Feladatok függvényekkel
  • Gyökös azonosságok és gyökös egyenletek
  • Halmazok
  • Másodfokú egyenletek
  • Százalékszámítás és pénzügyi számítások
  • Vektorok

Függvények érintője

  • Epizódok
  • Feladatok
  • Érettségik
  • Képletek
01
 
A függvény grafikonjához húzott érintő egyenlete
02
 
FELADAT | Érintő egyenlete

Szerezd meg a hiányzó tudást

2020 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

2020 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

2019 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

2019 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

2018 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

2018 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

2017 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

2017 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

2016 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

2016 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

2015 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

Az érintő egyenlete

A derivált geometriai jelentése a függvény grafikonjához húzott érintő meredeksége.

Az érintő egyenlete:

\( f(x) = f'(x_0) (x-x_0) + f(x_0) \)

Megnézem a kapcsolódó epizódot

1.

Oldjuk meg az alábbi feladatokat:

a) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2x^3+1 \) függvényt az \( y_0=55 \) pontban érinti.

b) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=x^2-x+4 \) függvényt egy olyan pontban érinti, aminek \( x \) koordinátája negatív, \( y \) koordinátája 24.

c) Keressük annak az érintőnek az egyenletét, amely érinti az \( f(x)=x^4+5x+12 \) függvényt és párhuzamos az \( y=-27x+1 \) egyenessel.

d) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2e^{x-4}+5 \) függvényt az \( y_0=7 \) pontban érinti.

Megnézem, hogyan kell megoldani

2.

Oldjuk meg az alábbi feladatokat:

a) Van itt ez a függvény: \( f(x)=\sqrt[3]{\ln{x}+x^2} \), és keressük az érintő egyenletét az \( x_0=1 \) pontban.

b) Van itt ez a függvény: \( f(x)=\sin{(\ln{x})}+x \), és keressük az érintő egyenletét az \( x_0=1 \) pontban.

c) Van itt ez a függvény: \( f(x)=\ln{(\cos{x})}+e^{4x} \), és keressük az érintő egyenletét az \( x_0=0 \) pontban.

d) Van itt ez a függvény: \( f(x)=\arctan{x}+e^x \), és keressük az érintő egyenletét az \( x_0=0 \) pontban.

e) Van itt ez a függvény: \( f(x)=\arctan{( \ln{x} )} \), és keressük az érintő egyenletét az \( x_0=1 \) pontban.

Megnézem, hogyan kell megoldani

A témakör tartalma


A függvény grafikonjához húzott érintő egyenlete

FELADAT | Érintő egyenlete

Kapcsolatfelvétel
  • Segítségnyújtás
  • Hibabejelentés
  • Kapcsolatfelvétel
  • Mateking torrent bejelentés
Rólunk
  • A projektről
  • Médiamegjelenések
  • Legyen élmény a matek
  • Mire jó a matek?
Tartalomjegyzék
  • Középiskolai matek
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Lineáris algebra
  • Valószínűségszámítás
  • Diszkrét matematika
  • Statisztika
  • További tantárgyak
  • Egyetemi tematikák
  • Matek érettségi
GYIK Általános szerződési feltételek Adatkezelési tájékoztató Felhasználás oktatási célra

Cookie-használat módosítása

© Minden jog fenntartva!

Az oldalon található tartalmak részének vagy egészének másolása, elektronikus úton történő tárolása vagy továbbítása, harmadik fél számára nyújtott oktatási célra való hasznosítása kizárólag az üzemeltető írásos engedélyével történhet. Ennek hiányában a felsorolt tevékenységek űzése büntetést von maga után!

barion
macroweb
  • Tantárgyaim