- ÚJ! Geometriai valószínűség
- ÚJ! Gráfok izomorfiája
- ÚJ! Kvartilisek és dobozdiagram (box plot)
- ÚJ! Kamatos kamat, törlesztőjáradék, gyűjtőjáradék
- Valószínűségszámítás (15,3 pont)
- Térgeometria (12,5 pont)
- Kombinatorika (11,9 pont)
- Függvényvizsgálat, szélsőérték feladatok (11,2 pont)
- Számtani és mértani sorozatok (8,6 pont)
- Statisztika (7,3 pont)
- Az integrálás (7,1 pont)
- Szöveges feladatok (6,1 pont)
- Koordinátageometria (5,1 pont)
- Gráfok (4,8 pont)
- ***Vegyes emelt szintű feladatok***
- Exponenciális egyenletek és egyenlőtlenségek (4,7 pont)
- Exponenciális, logaritmusos és trigonometrikus egyenletrendszerek
- Síkgeometria (4,1 pont)
- Számelmélet (3,9 pont)
- Logaritmus, logaritmikus egyenletek (3,5 pont)
- Középpontos hasonlóság (3,1 pont)
- Trigonometrikus egyenletek és egyenlőtlenségek (3,1 pont)
- Szinusztétel és koszinusztétel (2,7 pont)
- A várható érték (2,6 pont)
- Függvények ábrázolása (2,5 pont)
- Deriválás (1,9 pont)
- Függvények érintője
- Trigonometria
- Sorozatok monotonitása és korlátossága
- Sorozatok határértéke
- Függvények határértéke és folytonossága
- Algebra, nevezetes azonosságok
- Abszolútértékes egyenletek és egyenlőtlenségek
- Bizonyítási módszerek, matematikai logika
- A teljes indukció
- A Pitagorasz-tétel
- Egybevágósági transzformációk
- Egyenletrendszerek
- Egyenlőtlenségek
- Hatványozás, hatványazonosságok, normálalak
- Mértékegységek és mértékegység-átváltás
- Összetett függvény, inverz függvény
- Pontok, egyenesek, síkok, szögek, a geometria alapjai
- Síkidomok, háromszögek, négyszögek, sokszögek
- Számrendszerek
- Elsőfokú függvények
- Feladatok függvényekkel
- Gyökös azonosságok és gyökös egyenletek
- Halmazok
- Másodfokú egyenletek
- Százalékszámítás
- Vektorok
Vektorok
Vektor
A vektor egy irányított szakasz.
Jelölése: $\underline{v} = \overrightarrow{AB} $
Vektorok összeadása és kivonása
Van itt két vektor: $\underline{a}=(a_1, a_2)$, $\underline{b}=(b_1,b_2)$
A két vektor összege:
\( \underline{a} + \underline{b} = (a_1 + b_1, a_2 + b_2) \)
A két vektor különbsége:
\( \underline{a} - \underline{b} = (a_1 - b_1, a_2 - b_2) \)
\( \vec{AB} = \underline{b} - \underline{a} \)
Vektor hossza, két pont távolsága
Van itt az $\underline{a}=(a_1, a_2)$ és $\underline{b}=(b_1, b_2)$ vektor.
Az $\underline{a}$ vektor hossza:
\( \mid \underline{a} \mid = \sqrt{a_1^2 + a_2^2} \)
Az $ \vec{AB} $ vektor hossza:
\( \vec{AB} = \mid \underline{b} - \underline{a} \mid = \sqrt{ (b_1 - a_1)^2 + (b_2-a_2)^2 } \)
És pont ugyanígy kapjuk meg az $A$ és $B$ pontok távolságát is.
Két pont közti vektor
Két pont közti vektor a végpontba mutató helyvektor minusz a kezdőpontba mutató helyvektor.
Tehát \( \vec{AB} = \underline{b} - \underline{a} \)
Adott egy kocka. Az A csúcsából kiinduló 3 oldalvektor segítségével fejezzük ki az alábbi vektorokat.
a) \( \overrightarrow{AG} = \; ? \)
b) \( \overrightarrow{FH} = \; ? \)
c) \( \overrightarrow{CE} = \; ? \)