Eloszlás, eloszlásfüggvény, sűrűségfüggvény

1. Egy céltábla sugara 50 cm. Azt a távolságot, hogy ilyen távol lövünk a céltábla középpontjától, jelöljük $X$-szel. Tegyük föl, hogy a céltáblát biztosan eltaláljuk. 

a) $P(X<10)=?$

b) $P(X<20)=?$

c) $P(X<x)=?$

Megnézem, hogyan kell megoldani


2.

a) Lehet-e $X$ valószínűségi változó sűrűségfüggvénye az alábbi függvény?

\( f(x)= \begin{cases} e^{2x}, &\text{ha } x<0 \\ 1-x, &\text{ha } 0\leq x\leq1 \\ 0, &\text{ha } 1<x \end{cases} \)

b) Milyen $A$ paraméter esetén lesz $f(x)$ sűrűségfüggvény?

\( f(x)= \begin{cases} e^{3x}, &\text{ha } x<0 \\ Ax^2, &\text{ha } 0\leq x\leq1 \\ 0, &\text{ha } 1<x \end{cases} \)

Megnézem, hogyan kell megoldani


3. Csináljunk $F(x)$-ből $f(x)$-et.

\( F(x)= \begin{cases} \frac{3}{4}e^{2x-4}, &\text{ha } x<2 \\ 1-\frac{1}{x^2}, &\text{ha } 2 \leq x \end{cases} \)

Megnézem, hogyan kell megoldani


4.

a) Adott az $X$ valószínűségi változó eloszlásfüggvénye, álltsuk elő a sűrűségfüggvényt.

\( F(x)= \begin{cases} \frac{1}{2}e^{2x}, &\text{ha } x \leq 0 \\ \frac{1}{2}+x-\frac{x^2}{2}, &\text{ha } 0 < x \leq 1 \\ 1, &\text{ha } 1<x \end{cases} \)

b) Itt volna a sűrűségfüggvény és állítsuk elő az eloszlásfüggvényt!

\( f(x)= \begin{cases} e^{2x}, &\text{ha } x \leq 0 \\ 1-x, &\text{ha } 0 < x \leq 1 \\ 0, &\text{ha } 1<x \end{cases} \)

Megnézem, hogyan kell megoldani


5. \( F(x) \) egy eloszlásfüggvény.

\( F(x)= \begin{cases} A+2^{x-2}, &\text{ha } x<1 \\ B-\frac{1}{x^2+1}, &\text{ha } 1 \leq x \end{cases} \)

\( A=? \qquad B=? \qquad P(0<X<2)=? \qquad f(x)=? \)

Megnézem, hogyan kell megoldani


6. \( f(x) \) egy sűrűségfüggvény.

\( f(x)= \begin{cases} Ae^{3x-6}, &\text{ha } x<2 \\ 0, &\text{ha } 2 \leq x \end{cases} \)

\( A=? \qquad F(x)=? \qquad P(1<X<3)=? \)

Megnézem, hogyan kell megoldani


7. \( f(x) \) egy sűrűségfüggvény.

\( f(x)= \begin{cases} \frac{1}{4} \frac{1}{\sqrt{x+1}}, &\text{ha } 0<x \leq 8 \\ 0, &\text{máshol } \end{cases} \)

\( F(x)=? \qquad P(0<X<3)=? \)

Megnézem, hogyan kell megoldani


8. Egy sorsjegy ára 200 forint és minden ötödik sorsjegy nyer. Pista bácsinak 800 forintja van és addig veszi a sorsjegyeket, amíg nem nyer - vagy amíg el nem fogy a pénze. Jelentse X a vásárolt sorsjegyek számát. Adjuk meg az eloszlást, eloszlásfüggvényt, várható értéket és szórást.

Megnézem, hogyan kell megoldani


9. Egy dobozban van 2 piros, 3 sárga és 1 kék labda. Kiveszünk három darabot visszatevés nélkül. Jelentse X a húzott piros labdák számát. Adjuk meg az eloszlást, eloszlásfüggvényt, várható értéket és szórást.

Megnézem, hogyan kell megoldani


10. Egy dobozban cédulákat helyezünk el. Egy darab 1-es, két darab 2-es és három darab 3-as feliratút. A dobozokból két cédulát húzunk és jelentse X a húzott cédulákon szereplő számok összegét. Adjuk meg az eloszlást és az eloszlásfüggvényt.

Megnézem, hogyan kell megoldani

A témakör tartalma


Az eloszlásfüggvény

A sűrűségfüggvény

Valószínűségek kiszámolása az eloszlásfüggvénnyel és a sűrűségfüggvénnyel

Sűrűségfüggvényből eloszlásfüggvény és fordítva

Tipikus eloszlásfüggvény feladat

Tipikus sűrűségfüggvény feladat

Még egy tipikus sűrűségfüggvény feladat

FELADAT | Eloszlás, eloszlásfüggvény

FELADAT | Eloszlás, eloszlásfüggvény

FELADAT | Eloszlás, eloszlásfüggvény