Jump to navigation

Belépés
  • Elfelejtettem a jelszavam
Regisztráció
 
  • Hogyan működik a mateking?
  • Mire jó a matek?
  • Matek érettségi
  • Képletgyűjtemény
  • Feladatgyűjtemény
  • Rólunk
  • Matek 5. osztály próbaüzem
  • Matek 6. osztály próbaüzem
  • Matek 7. osztály próbaüzem
  • Matek 8. osztály próbaüzem
  • Matek 9. osztály
  • Matek 10. osztály
  • Matek 11. osztály
  • Matek 12. osztály
  • Középiskolai matek (teljes)
  • Középszintű matek érettségi
  • Emelt szintű matek érettségi
  • Egyetemi matek alapozó
Összes egyetemi tantárgy
Legnépszerűbb tantárgyak:
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Valószínűségszámítás
  • Lineáris algebra
  • Diszkrét matematika
  • Statisztika

mateking

Login
 

Matek 1 Corvinus

Kategóriák
  • Rémes előzmények
  • Függvények
  • Összetett függvény és inverzfüggvény
  • Sorozatok
  • Küszöbindex és monotonitás
  • Sorok
  • Függvények határértéke és folytonossága
  • Deriválás
  • Hatványsorok & Taylor sorok
  • Differenciálhatóság vizsgálata és az érintő egyenlete
  • Függvényvizsgálat, gazdasági feladatok
  • L'hospital-szabály, Taylor-polinom, Taylor-sor
  • Mátrixok, vektorok
  • Független és összefüggő vektorok
  • Lineáris egyenletrendszerek
  • Determináns, sajátérték, sajátvektor
  • Határozatlan integrálás, primitív függvény
  • Határozott integrálás
  • Kettős integrál
  • Kétváltozós függvények

Rémes előzmények

  • Epizódok
  • Feladatok
  • Képletek
  • Tesztek
01
 
Függvények ábrázolása, függvénytranszformációk
01
 
Függvények ábrázolása teszt
02
 
Inverz függvények teszt
02
 
A teljes négyzetté kiegészítés művészete
03
 
Az exponenciális függvények és a hatványazonosságok
04
 
Színre lép a logaritmus
05
 
Az egységkör
06
 
Szinusz, koszinusz és társai
06
 
Hatványsorok
07
 
Trigonometrikus egyenletek megoldása
08
 
Az inverzfüggvény
09
 
Újabb inverzfüggvények

Egységkör

Azt a kört a koordinátarendszerben, aminek középpontja az origo és a sugara 1, egységkörnek nevezzük.

Megnézem a kapcsolódó epizódot

konvergenciasugár

Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük, ahol $r$ a konvergenciasugár.

A konvergencia tartomány belső pontjaiban a hatványsor abszolút konvergens, a végpontokat pedig külön kell vizsgálni.

Megnézem a kapcsolódó epizódot

konvergenciatartomány

Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük.

A konvergencia tartomány belső pontjaiban a hatványsor abszolút konvergens, a végpontokat pedig külön kell vizsgálni.

Megnézem a kapcsolódó epizódot

Koszinusz

Az egységkörben az $x$ tengely irányát kezdő iránynak nevezzük, az egységvektor végpontjába mutató irányt pedig záró iránynak. A két irány által bezárt szög $\alpha$. Az egységvektor végpontjának $x$ koordinátáját nevezzük az $\alpha$ szög koszinuszának, és így jelöljük: $\cos{ \alpha}$.

Megnézem a kapcsolódó epizódot

Szinusz

Az egységkörben az $x$ tengely irányát kezdő iránynak nevezzük, az egységvektor végpontjába mutató irányt pedig záró iránynak. A két irány által bezárt szög $\alpha$. Az egységvektor végpontjának $y$ koordinátáját nevezzük az $\alpha$ szög szinuszának, és így jelöljük: $\sin{ \alpha}$.

Megnézem a kapcsolódó epizódot

Tangens

Egy $\alpha$ szög tangense az $\alpha$ szög szinuszának és koszinuszának hányadosával egyenlő:

\( \tan{\alpha} = \frac{ \sin{\alpha}}{\cos{\alpha}} \quad \alpha \neq \frac{\pi}{2}+k\cdot \pi \quad k \in Z \)

Megnézem a kapcsolódó epizódot

Trigonometriai összefüggések

\( \tan{x} = \frac{ \sin{x} }{ \cos{x} } \)

\( \cot{x} = \frac{ \cos{x} }{ \sin{x} } \)

\( \sin^2{\alpha} + \cos^2{\alpha} = 1  \quad \sin^2{\alpha} = 1-\cos^2{\alpha} \quad \cos^2{\alpha}=1-\sin^2{\alpha} \)

\( \cos{\alpha} = \sin{ \left( \frac{ \pi}{2} - \alpha \right) } \quad \cos{\alpha} = \sin{ \left( \alpha + \frac{ \pi}{2}\right) }  \quad \sin{\alpha} = \sin{ ( \pi - \alpha) }\)

\( \sin{\alpha} = \cos{ \left( \frac{ \pi}{2} - \alpha \right) } \quad -\sin{\alpha} = \cos{ \left( \alpha + \frac{ \pi}{2}\right) }  \quad -\cos{\alpha} = \cos{ ( \pi - \alpha) }\)

\( \sin{2\alpha} = 2 \sin{\alpha}\cos{\alpha} \quad \sin{(\alpha \pm \beta)} = \sin{\alpha} \cos{\beta} \pm \cos{\alpha} \sin{\beta} \)

\( \cos{2\alpha} = \cos^2{\alpha} - \sin^2{\alpha} \quad \cos{(\alpha \pm \beta )} = \cos{\alpha} \cos{\beta} \mp \sin{\alpha}\sin{\beta} \)

\( \sin^2{\alpha}=\frac{1-\cos{2 \alpha}}{2}  \)

\( \cos^2{\alpha}=\frac{1+\cos{2 \alpha}}{2}  \)

 

Megnézem a kapcsolódó epizódot

Szinuszos és koszinuszos egyenletek megoldása

A $\sin{x}$ és $\cos{x}$ függvények periodikusak, ez azt jelenti, hogy bizonyos időközönként megismétlik önmagukat. Ezt az időközt periódusnak nevezzük és az ő esetükben a periódus $2\pi$.

Ha van egy ilyen egyenlet, hogy

$ \sin{x} = \frac{1}{2} $

akkor ennek a periodikussága miatt végtelen sok megoldása van, ezért írjuk oda a megoldások mögé, hogy $+2k\pi$.

További nehézség, hogy két megoldás is van, az egyiket a számológépünk adja, a másikat pedig...

Szinusz esetén úgy, hogy a két megoldás összegének $\pi$-nek kell lennie.

Koszinusz esetén pedig úgy, hogy a két megoldás mindig egymás minuszegyszerese.

Megnézem a kapcsolódó epizódot

inverzfüggvény

Minden függvény egy $x \mapsto y$ hozzárendelés, aminek az inverze, ha az egyáltalán létezik, az $y \mapsto x$ fordított hozzárendelés.

Inverze csak azoknak a függvényeknek van, amik két különböző $x$-hez különböző $y$-okat rendelnek, ezt úgy mondjuk, hogy kölcsönesen egyértelműek, vagy kicsit rövidebben injektívek.

Megnézem a kapcsolódó epizódot

1.

Adjuk meg az alábbi szögek szinuszának és koszinuszának pontos értékeit!

0°, 45°, 60°, 90°, 120°, 135°, 180°

Megnézem, hogyan kell megoldani

2.

Itt van egy hatványsor, és derítsük ki, hogy mely x-ekre konvergens.

a) $$ \sum_{n=1}^{\infty} \frac{3^n}{n} (x-2)^n $$

b) $$ \sum_{n=1}^{\infty} \frac{(x+2)^n}{ n^2 3^n } $$

c) $$ \sum_{n=0}^{\infty} \frac{x^n}{ 2^n n! } $$

d) $$ \sum_{n=1}^{\infty} \frac{ 5^n (x+1)^{2n}}{ n^2 } $$

Megnézem, hogyan kell megoldani

3.

Oldjuk meg az alábbi egyenleteket.

a) \( \cos{x} = \frac{1}{2} \)

b) \( \sin{3x} = -\frac{1}{2} \)

Megnézem, hogyan kell megoldani

4.

Oldjuk meg az alábbi két egyenletet a $[0,2\pi ]$ intervallumba eső számok halmazán

a) \( 2\cos{x} + 1 = 0 \)

b) \( 2\cos^2{x} - \cos{x} = 0\)

Megnézem, hogyan kell megoldani

5.

Adjuk meg az \( f(x)=16-x^2 \) függvény inverzát, ha

a) \( x \in \mathbb{R} \)

b) \(  x \in \mathbb{R}^+ \)

c) \( -4 \leq x \leq 0 \)

d) \( -4 \leq x \leq 4\)

Megnézem, hogyan kell megoldani

6.

Mi az inverzfüggvénye?

a) \( f(x)=\sqrt{x-2} \)

b) \(  f(x)=2^x  \)

c) \( f(x)=3+\log_2{(x-5)} \)

d) \( f(x)=4+e^{2x-1} \)

e) \( f(x)=7+ \ln{ \frac{x+3}{4 }} \)

Megnézem, hogyan kell megoldani

A témakör tartalma


Függvények ábrázolása, függvénytranszformációk

Kezdjük egy nagyon egyszerű dologgal.

Nézzük meg, hogyan működnek a függvények.

Nos itt van az x tengely, tele számokkal.

x tengely

A függvény pedig ezek közül a számok közül bizonyos számokhoz hozzárendel egy másik számot.

Mondjuk hozzárendeli a négyzetüket.

Ezt a függvényt így jelöljük, hogy

Legtöbbször ezt a harmadik jelölést fogjuk használni.

Azokat a szerencsés x-eket amikhez a függvény hozzárendel valamit, értelmezési tartománynak nevezzük és -el jelöljük.

Az x2-nél ez az egész x tengely.

De itt jön például a  

ami negatív x-ekre nincs értelmezve.

Így aztán az értelmezési tartomány:

Az y tengelynek azt a részét, amit az x-ekhez hozzárendeltünk értékkészletnek nevezzük.

Az értékkészlet jele

Most pedig térjünk vissza az x2 függvényhez.

Az x2 függvény grafikonja egy parabola, a parabolának a csúcsa az origóban van.

De ha x helyére azt írjuk, hogy

nos akkor odébb megy.

A parabola csúcsa mindig ott van, ahol ez nulla.

Most éppen -nál.

Itt jön aztán mondjuk ez.

Ha a négyzeten kívül még hozzáadunk hármat,

nos az az y tengelyen tolja el 3-mal.

Ezt belső függvény transzformációnak nevezzük,

ezt pedig külsőnek.

Ha van egy ilyen, hogy

akkor a belső transzformáció miatt az x tengely mentén tolódik el,

a külső miatt pedig az y tengely mentén.

Lássuk mi történik, ha ide 2x-et írunk.

Nos ekkor az y tengely mentén van egy kis megnyúlás,

de ez nem annyira izgalmas.

Ami sokkal izgalmasabb, hogy az eltolódás is megváltozik.

És most lássuk, hogyan nézhet ki ez.

A -et már ismerjük.

Ezt kell arrébb tolnunk az x tengelyen lássuk csak…

3-mal.

Az y tengelyen pedig 2-vel.

Ha pedig van egy ilyen, hogy

nos akkor a 3x miatt kicsit megnyúlik,

aztán pedig a szokásos.

Ha a  elé írunk egy mínusz jelet, akkor ezzel a függvény grafikonját az x tengelyre tükrözzük.

Ha belülre rakjuk a mínuszjelet, akkor ezáltal az y tengelyre tükrözzük.

És ha kedvünk van, tükrözhetjük a függvényt mindkét tengelyre is.

A helyzet akkor válik izgalmassá, ha ezt ötvözzük az eddigi tologatással.

Nézzük meg például, hogy vajon hogyan nézhet ki ez a függvény.

Lesz egy kis eltolódás az x tengelyen,

aztán az y tengelyen is,

és végül a mínuszjel miatt egy tükrözés.

Ha a mínuszjel kívül van, nos akkor egészen más a helyzet:

Hát ez remek. Ez a külső függvénytranszformáció meg belső függvénytranszformáció igazán nagyon izgalmas elfoglaltság. Most pedig nézzük mi jöhet még.


A teljes négyzetté kiegészítés művészete

A teljes négyzetté kiegészítés művészete.

Az előző képsorban látott függvény-transzformációk alapján megpróbáljuk ábrázolni ezt a függvényt.

Ahhoz, hogy eldönthessük, ez a függvény milyen transzformációknak esett áldozatául, először egy nagyon vicces dolgot kell csinálnunk vele.

Ezt a dolgot teljes négyzetté kiegészítésnek nevezzük és még később is sokszor kelleni fog, így hát essünk túl rajta.

A lényeg ez a két azonosság:

Most éppen ebbe az irányba használjuk majd őket.

Addig-addig nézegetjük a függvényt, amíg belelátjuk valamelyik azonosságot.

Lássuk csak mennyi lehet vajon b.

Nos ennyi: 

És ezt már tudjuk ábrázolni, ha még emlékszünk az előző képsorra.

Nézzük meg ezt is:


Az exponenciális függvények és a hatványazonosságok

Most pedig itt az ideje, hogy újabb függvényekkel ismerkedjünk meg.

A következő képsorban már jönnek is az exponenciális függvények.

Ez exponenciális függvényekkel való ismerkedésünket kezdjük az alapokkal, a hatványazonosságokkal.

Hatványozni jó dolog és így kezdetben bőven elég annyit tudni, hogy

de semmi ördögi nem lesz itt.

Az első hatványazonosság azzal fog foglalkozni, hogy mi történik, ha megszorozzuk ezt mondjuk azzal, hogy 62.

Hát nézzük meg.

Nos ha ezeket összeszorozzuk, akkor

a kitevők összeadódnak.

Ez lesz az első azonosság.

HATVÁNYAZONOSSÁGOK

Most nézzük meg mi történik, ha ezeket elosztjuk egymással.

De azért van itt egy apró kellemetlenség.

Már jön is.

Nos amikor a nevező kitevője nagyobb, ilyenkor az eredmény egy tört.

Itt pedig a kitevő negatív lesz.

Most lássuk, hogyan kell hatványt hatványozni.

Nos így:

A kitevőket kell összeszoroznunk.

Itt van aztán ez, hogy

Na ez vajon mi lehet?

Nézzük meg mi történik ha alkalmazzuk rá a legújabb azonosságunkat.

Vagyis ez valami olyan, amit ha négyzetre emelünk, akkor 9-et kapunk.

Ilyen éppenséggel van, ezt hívjuk -nek.

A törtkitevő tehát gyökvonást jelent.

Az előbbi két azonosságot kicsit továbbfejlesztve kapunk egy harmadikat.

Ha van egy ilyen, hogy

nos akkor ezen ki is próbálhatjuk ezt a képletet.

Jön itt még néhány újabb képlet,

de most már lássuk a függvényeket.

Így néz ki a 2x függvény. Ez pedig a 3x.

Ha az alap egy 2 és 3 közti szám, akkor a függvény a 2x és a 3x között van.

Például egy ilyen szám a

2,71828182845904523536028747135266249775724709369995…

Ez a szám mágikus jelentőséggel bír a matematikában és az egyszerűség kedvéért elnevezték e-nek.

Ez a függvény tehát az ex.

Az összes 1-nél nagyobb alapú exponenciális függvény valahogy így néz ki.

Ha az alap 1-nél kisebb, nos az egy másik állatfajta.


Színre lép a logaritmus

Színre lép a logaritmus

És most egy új szereplő lép színre, a logaritmus.

Nos ez a logaritmus egy nagyon remek dolog, de kis magyarázatot igényel.

Mindössze arról van szó, hogy azt mondja meg, a-t hányadik hatványra kell emelni ahhoz, hogy x-et kapjunk.

Itt van például ez:

Ez azt jelenti, hogy 2-t hányadik hatványra kell emelnünk, hogy 8-at kapjunk.

Nos 23=8, tehát a válasz…

Vagy nézzük meg ezt:

Nos lássuk csak

Itt jön aztán egy nehezebb ügy:

A kérdés az, hogyan lesz a 8-ból 2. Az elosztjuk 4-gyel ugye nem jó válasz, mert valami hatványozás kell ide.

A jó válasz:

Próbáljuk meg kitalálni, mennyi lehet ez:

A kérdés, 8 a hányadikon a 16.

Nos ami a 8-ban és a 16-ban közös, az a 2, mert 23=8 és 24=16.

Így aztán úgy jutunk el a 8-ból a 16-hoz, hogy előbb a 8-ból csinálunk 2-t,

utána pedig a 2-ből 16-ot.

Mindezek után már nem jelenthet gondot ez sem:

Sőt ez sem:

Most pedig lássuk a logaritmusos azonosságokat.

LOGARITMUS AZONOSSÁGOK

A logaritmus egyik legnagyobb haszna az, hogy képesek vagyunk megoldani az ilyen egyenleteket, mint amilyen ez

Mindkét oldalnak vesszük a logaritmusát.

És voila.

Általánosítva, ha van egy ilyen, hogy 

akkor ebből így kapjuk meg x-et.

A megfordítását is jegyezzük meg, ha

akkor így kapjuk meg x-et.

Exponenciális egyenlet megoldása

Logaritmikus egyenlet megoldása

Oldjuk meg például ezeket:

Most pedig lássuk a függvényeket.

Nos a logaritmus csak pozitív x-ekre van értelmezve.

Ha az alap 1-nél nagyobb, akkor a függvény növekszik.

Ha 1-nél kisebb, akkor csökken.


Szinusz, koszinusz és társai

Van itt ez az egység sugarú kör.

Az egységkörben az x tengely irányát kezdő iránynak nevezzük,

a P pontba mutató irányt pedig záró iránynak.

A két irány által bezárt szög lehet pozitív,

és lehet negatív.

A szöget pedig mérhetjük fokban és mérhetjük radiánban.

A P pont x koordinátáját -nak nevezzük.

Az y koordinátáját -nak.

Most pedig számoljuk ki néhány szög szinuszát és koszinuszát.

A sinx és cosx periodikus függvények.

Ez azt jelenti, hogy bizonyos időközönként megismétlik önmagukat.

Ezt az időközt periódusnak nevezzük és az ő esetükben ez a periódus 2pi.

Ha van egy ilyen egyenlet, hogy

nos akkor ennek a periodikusság miatt végtelen sok megoldása van.

Ráadásul van egy kék megoldás,

ezt adja a számológép, ez meg a periódus.

Na persze a számológéppel ezt úgy lehet kiszámolni, hogy

és van egy zöld.

Na, ezt már nem adja ki a számológép, hanem egy kis cselhez kell folyamodnunk.

A szinusz úgy működik, hogy mindig van egy kék megoldás, amit a számológép ad,

és van egy zöld megoldás, amit nekünk kell kiszámolni és úgy kapjuk,

hogy az összegüknek éppen pi-nek kell lennie.

Ezt nem árt megjegyezni.

Lássuk, mi a helyzet a koszinusszal.

Itt is lesz egy kék és egy zöld megoldás,

ráadásul mindkettőből végtelen sok.

A helyzet annyival egyszerűbb, mint a szinusz esetében, hogy itt

a kék és a zöld megoldás mindig egymás mínuszegyszerese.

A kéket adja a számológép.

és ha elé biggyesztünk egy mínuszjelet.

nos akkor meg is van a zöld.

A koszinusz tehát sokkal jobb, mint a szinusz.

Itt jön egy újabb remek történet.

A szinusz úgy működik, hogy a kék megoldást mindig a számológép adja,

a zöld megoldás pedig úgy jön ki, hogy a két szög összege mindig pi legyen.

Most pedig újabb állatfajták következnek.

Lássuk hogyan is néznek ezek ki.

Nos nem túl szépen.

Leginkább talán tapétamintának használhatnánk őket.

A vizuális élvezetek után most a trigonometriai képletek özönvízszerű áradata következik.

Csak a legfontosabb egymillió darab képletet nézzük meg.

A LEGFONTOSABB TRIGONOMETRIAI ÖSSZEFÜGGÉSEK

Itt az egység sugarú körben van egy derékszögű háromszög,

amire felírjuk a Pithagorasz-tételt.

Nos talán ez a legfontosabb trigonometriai összefüggésünk.

Van ennek két mutáns változata is.

Most pedig újabb bűvészkedések következnek az egységsugarú körben.

És itt jön még néhány.


Az inverzfüggvény

Minden függvény egy hozzárendelés, aminek az inverze, ha az egyáltalán létezik, az fordított hozzárendelés.

Az inverz kiszámolásának menete a következő:

Legyen mondjuk

Előszöris írjuk a függvényt y=izé alakban:

Itt x-hez rendelünk y-t.

Az inverz a fordított hozzárendelés, ahol y-hoz rendelünk x-et, ezért a cél mindig az, hogy az Y=izét x=bigyó alakra rendezzük.

Végül x-et és y-t kicseréljük (van aki nem) és így kapjuk az inverzt:

Az inverz jele:

Van azonban egy kis gond. Nem minden függvénynek van inverzze, ugyanis nem minden függvénynél fordítható meg a hozzárendelés.

Például az  függvény esetében és amit megfordítani nem tudunk: .

A gond azzal van, hogy ez a függvény két különböző számhoz (a 2-höz és a -2-höz is) ugyanazt a számot rendeli és emiatt a hozzárendelés nem fordítható meg.

De ha a negatív számokat kiiktatjuk,

nos akkor már minden rendben.

Inverze tehát csak azon függvényeknek van, amik két különböző x-hez

különböző y-okat rendelnek.

Ezt úgy mondjuk, hogy kölcsönösen egyértelműek, vagy kicsit rövidebben injektívek.

Az függvény injektív, ha  akkor .

Minden szigorúan monoton függvény injektív és így invertálható.

És van itt még egy dolog.

Legyen a függvényünk az  és értelmezési tartománya .

Nos, ekkor az értékkészlete .

Az inverz függvény a fordított hozzárendelés, tehát ilyenkor ezek fölcserélődnek.

Ha  invertálható, akkor az értelmezési tartománya megegyezik az inverzének értékkészletével, és értékkészlete az inverz értelmezési tartományával.

Nézzünk néhány példát.

Adjuk meg az  függvény inverzét, ha

Nincs inverz, mert a függvény nem injektív.

Például 4-hez és -4-hez is ugyanazt rendeli, éppenséggel 0-t.

Ebben az esetben viszont egészen más a helyzet, itt ugyanis x csak pozitív lehet. Márpedig nincs két pozitív szám, aminek a négyzete ugyanaz, így a függvény injektív.

Lássuk az inverzt

Ebben az esetben is van inverz, mert a függvény injektív.

Lássuk az inverzt!

Ebben az esetben a függvénynek nincs inverze, mert ezúttal sem injektív, például 4-hez és -4-hez is megint ugyanazt rendeli, 0-t.

Sajna ilyenkor sincs inverz, mert a függvény nem injektív.

Lássunk még egyet.

Van itt ez a függvény, keressük az inverzét.

 és

Végül nézzük meg ezt is.

Beszéljünk egy kicsit az inverz geometriai jelentéséről.

Van itt egy függvény

és nézzük meg, mi történik a függvény grafikonjával, amikor invertáljuk.

Nos ez.

Tükrözzük a függvénygrafikonját az y=x egyenletű egyenesre.

A rajzon az is remekül látszik, hogy a gyökös függvények inverze sosem a teljes paraola, mindig csak a fele.

És ez fordítva is igaz: a teljes parabolát sosem tudjuk invertálni, mindig csak a felét.

Itt jön aztán egy másik remek függvény az

Nos ennek a függvénynek az inverze az

Az exponenciális függvények inverzei a logaritmusfüggvények.

És ez kölcsönös, tehát a logaritmusfüggvények inverzei az exponenciális függvények.

Nézzük meg például ennek az inverzét:

A kitevőből úgy tudjuk x-et előcsalogatni, hogy vesszük mindkét oldal logaritmusát.

Vagy itt van például egy másik:

Az  és az szintén egymás inverzei.

Vigyázni kell ezzel az inverz függvény számolással, nagy mennyiségben ugyanis ártalmas lehet.

De talán egy még belefér…


Újabb inverzfüggvények

Minden függvény egy hozzárendelés, aminek az inverze, ha az egyáltalán létezik, az fordított hozzárendelés.

Az inverz kiszámolásának menete a következő:

Legyen mondjuk

Előszöris írjuk a függvényt y=izé alakban:

Itt x-hez rendelünk y-t.

Az inverz a fordított hozzárendelés, ahol y-hoz rendelünk x-et, ezért a cél mindig az, hogy az Y=izét x=bigyó alakra rendezzük.

Végül x-et és y-t kicseréljük (van aki nem) és így kapjuk az inverzt:

Az inverz jele:

Van azonban egy kis gond. Nem minden függvénynek van inverzze, ugyanis nem minden függvénynél fordítható meg a hozzárendelés.

Például az  függvény esetében és amit megfordítani nem tudunk: .

A gond azzal van, hogy ez a függvény két különböző számhoz (a 2-höz és a -2-höz is) ugyanazt a számot rendeli és emiatt a hozzárendelés nem fordítható meg.

De ha a negatív számokat kiiktatjuk,

nos akkor már minden rendben.

Inverze tehát csak azon függvényeknek van, amik két különböző x-hez

különböző y-okat rendelnek.

Ezt úgy mondjuk, hogy kölcsönösen egyértelműek, vagy kicsit rövidebben injektívek.

Az függvény injektív, ha  akkor .

Minden szigorúan monoton függvény injektív és így invertálható.

És van itt még egy dolog.

Legyen a függvényünk az  és értelmezési tartománya .

Nos, ekkor az értékkészlete .

Az inverz függvény a fordított hozzárendelés, tehát ilyenkor ezek fölcserélődnek.

Ha  invertálható, akkor az értelmezési tartománya megegyezik az inverzének értékkészletével, és értékkészlete az inverz értelmezési tartományával.

Nézzünk néhány példát.

Adjuk meg az  függvény inverzét, ha

Nincs inverz, mert a függvény nem injektív.

Például 4-hez és -4-hez is ugyanazt rendeli, éppenséggel 0-t.

Ebben az esetben viszont egészen más a helyzet, itt ugyanis x csak pozitív lehet. Márpedig nincs két pozitív szám, aminek a négyzete ugyanaz, így a függvény injektív.

Lássuk az inverzt

Ebben az esetben is van inverz, mert a függvény injektív.

Lássuk az inverzt!

Ebben az esetben a függvénynek nincs inverze, mert ezúttal sem injektív, például 4-hez és -4-hez is megint ugyanazt rendeli, 0-t.

Sajna ilyenkor sincs inverz, mert a függvény nem injektív.

Lássunk még egyet.

Van itt ez a függvény, keressük az inverzét.

 és

Végül nézzük meg ezt is.

Beszéljünk egy kicsit az inverz geometriai jelentéséről.

Van itt egy függvény

és nézzük meg, mi történik a függvény grafikonjával, amikor invertáljuk.

Nos ez.

Tükrözzük a függvénygrafikonját az y=x egyenletű egyenesre.

A rajzon az is remekül látszik, hogy a gyökös függvények inverze sosem a teljes paraola, mindig csak a fele.

És ez fordítva is igaz: a teljes parabolát sosem tudjuk invertálni, mindig csak a felét.

Itt jön aztán egy másik remek függvény az

Nos ennek a függvénynek az inverze az

Az exponenciális függvények inverzei a logaritmusfüggvények.

És ez kölcsönös, tehát a logaritmusfüggvények inverzei az exponenciális függvények.

Nézzük meg például ennek az inverzét:

A kitevőből úgy tudjuk x-et előcsalogatni, hogy vesszük mindkét oldal logaritmusát.

Vagy itt van például egy másik:

Az  és az szintén egymás inverzei.

Vigyázni kell ezzel az inverz függvény számolással, nagy mennyiségben ugyanis ártalmas lehet.

De talán egy még belefér…


Az egységkör

Itt egy csodálatos kör, aminek a középpontja az origó és a sugara 1.

Ezt a kört egységkörnek nevezzük.

Az egységkör pontjainak x és y koordinátái -1 és 1 közé eső számok.

Ezekkel a koordinátákkal foglalkozni meglehetősen unalmas időtöltésnek tűnik…

Mivel azonban a matematikában mágikus jelentőségük van, egy kis időt mégis szakítanunk kell rájuk.

Itt van, mondjuk ez a P pont.

Az egységkörben az x tengely irányát kezdő iránynak nevezzük,

a P pontba mutató irányt pedig záró iránynak.

A két irány által bezárt szög lehet pozitív,

és lehet negatív.

A szöget pedig mérhetjük fokban és mérhetjük radiánban.

Nos, ez a radián egész érdekesen működik:

a szögek mérésére az egységkör ívhosszát használja.

Van itt ez a szög, ami fokban számítva

És most lássuk mi a helyzet radiánban.

A kör kerületének a képlete .

Az egységkör sugara 1, tehát a kerülete .

A 45fok a teljes körnek az 1/8-a,

így a hozzá tartozó körív is a teljes kerület 1/8-a vagyis

Nos így kapjuk, hogy

Most pedig lássuk az egységkör pontjainak koordinátáit.

Kezdjük ezzel, amikor

Ezt jegyezzük föl.

A jelek szerint ez egy egyenlő szárú háromszög, tehát x=y.

Jön a Pitagorasz-tétel:

Most nézzük meg mi van akkor, ha

Ha egy háromszögben van két -os szög, akkor a háromszög egyenlő oldalú.

És most jön a Pitagorasz-tétel.

Az  esetét elintézhetjük egy tükrözés segítségével.

Ha az -os esetet tükrözzük, akkor pedig eljutunk -hoz.

-nál túl sok számolásra nincs szükség.

Ahogyan –nál és -nál sem.

És most elérkezett az idő, hogy nevet adjunk ezeknek a koordinátáknak.

Az x koordinátát hívjuk Bobnak,

az y koordinátát pedig…

Nos mégsem olyan jó név a Bob. Egy K-val kezdődő név jobban hangzana.

Legyen mondjuk koszinusz.

A másik pedig szinusz.

Rögtön folytatjuk.

Van itt ez az egység sugarú kör.

Az egységkörben az x tengely irányát kezdő iránynak nevezzük,

a P pontba mutató irányt pedig záró iránynak.

A két irány által bezárt szög lehet pozitív,

és lehet negatív.

A szöget pedig mérhetjük fokban és mérhetjük radiánban.

A P pont x koordinátáját -nak nevezzük.

Az y koordinátáját -nak.

Most pedig számoljuk ki néhány szög szinuszát és koszinuszát.

A sinx és cosx periodikus függvények.


Trigonometrikus egyenletek megoldása

Hatványsorok

Azokat a végtelen sorokat, amelyek így néznek ki, hatványsornak nevezzük:

Itt van például egy hatványsor.

És derítsük ki, hogy mely x-ekre konvergens.

A hatványsoroknál általában a gyök kritérium szokott beválni.

Ha  akkor  

és  itt úgy viselkedik, mint egy konstans, vagyis sajátmagához tart.

A sor akkor konvergens, ha ez kisebb, mint 1.

A sárgával jelölt tartományban helyezkednek el azok az x-ek amelyekre a sor konvergens. 

Ezt hívjuk konvergencia-tartománynak.

Az   pedig a konvergencia-sugár.

A kérdés, hogy vajon konvergens-e a sor a konvergencia-tartomány végpontjaiban?

Nos, ezt mindig még külön meg kell vizsgálni.

A jelek szerint ez egy Leibniz-sor, tehát konvergens.

Most lássuk a másik végpontot.

Nos, itt a sor divergens.

-t a hatványsor középpontjának nevezzük.

-ban a hatványsor mindig abszolút konvergens.

Az  pont sugarú környezetét konvergencia tartománynak nevezzük.

A konvergencia tartomány belső pontjaiban a hatványsor abszolút konvergens, a végpontokat  pedig külön kell vizsgálni.

Lássuk mi a helyzet ezzel:

Megint gyök kritérium:

És most jöhetnek a végpontok.

Az ebben a végpontban kapott sor konvergens, sőt abszolút konvergens.

A másik végpontban szintén.

Itt jön aztán egy olyan hatványsor, amire nem lesz jó a gyök kritérium.

Az  miatt itt a hányados kritérium lesz a nyerő.

Írhatunk x helyére bármilyen számot, ez mindig teljesülni fog.

A jelek szerint tehát a sor miden x-re konvergens.


Kapcsolatfelvétel
  • Segítségnyújtás
  • Hibabejelentés
  • Kapcsolatfelvétel
  • Mateking torrent bejelentés
Rólunk
  • A projektről
  • Médiamegjelenések
  • Legyen élmény a matek
  • Mire jó a matek?
Tartalomjegyzék
  • Középiskolai matek
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Lineáris algebra
  • Valószínűségszámítás
  • Diszkrét matematika
  • Statisztika
  • További tantárgyak
  • Egyetemi tematikák
  • Matek érettségi
GYIK Általános szerződési feltételek Adatkezelési tájékoztató Felhasználás oktatási célra

Cookie-használat módosítása

© Minden jog fenntartva!

Az oldalon található tartalmak részének vagy egészének másolása, elektronikus úton történő tárolása vagy továbbítása, harmadik fél számára nyújtott oktatási célra való hasznosítása kizárólag az üzemeltető írásos engedélyével történhet. Ennek hiányában a felsorolt tevékenységek űzése büntetést von maga után!

barion
macroweb
  • Tantárgyaim