Barion Pixel Visszatevés nélküli mintavétel | mateking
 

Visszatevés nélküli mintavétel

A visszatevés nélküli mintavétel tipikus példája, hogy van egy doboz, benne $N$ darab elem. Közülük $K$ darab valamilyen tulajdonságú, az egyszerűség kedvéért hívjuk selejtesnek. Mondjuk sárga vagy szép vagy ronda. Kihúzunk $n$ darab elemet, és ez a képlet meg fogja nekünk mondani, hogy mekkora az esélye, hogy közülük $k$ darab a vizsgált tulajdonságú:

\( P(X=k)=\frac{\binom{K}{k} \cdot \binom{N-K}{n-k}}{\binom{N}{n}} \)

De vannak olyan esetek, amikor a visszatevés nélküli mintavételnél másik képletet kell használnunk. Ezt a másik képletet binomiális eloszlásnak nevezzük, és olyankor használjuk, amikor a selejtek száma helyett csak a selejtek arányát ismerjük.

Ez a binomiális eloszlás képlete:

\( P = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k} \)

ahol $n$ a kísérletek száma,

$k$ a sikeres kísérletek száma,

$p$ pedig a sikeres kísérlet valószínűsége.

És, hogy mi alapján döntjük el, hogy a két képlet közül melyiket kell használni? A dolog nagyon logikus, nézd meg a kapcsolódó epizódot és minden világos lesz.

Ha húzásokat vizsgálunk úgy, hogy a kihúzott elemeket nem tesszük vissza, akkor ez egy visszatevés nélküli mintavétel.

1.

 

a) Van egy dobókocka, aminek 3 oldala kék, 2 oldala sárga és 1 pedig piros. Nézzük meg, mekkora a sansza, hogy 4 dobásból 2 sárga.

b) Van egy dobókocka, aminek 3 oldala kék, 2 oldala sárga és 1 pedig piros. Mennyi annak a valószínűsége, hogy 4 dobásból 1 piros.

c) Egy dobozban van 3 kék, 2 sárga és 1 piros labda. Kiveszünk a dobozból 4 labdát. Mi a valószínűsége, hogy 1 sárga?

d) Egy dobókocka 3 oldala kék, 2 oldala sárga és 1 oldala piros. Egymás után 4-szer dobunk a kockával. Mi a valószínűsége, hogy 1 sárga?

e) Egy bárban 100-an vannak, közülük 60-an lányok. A vendégek közül kiválasztunk 10 embert. Mi a valószínűsége, hogy 7 lány?

f) Egy bárban a vendégek 60%-a lány. A vendégek közül kiválasztunk 10 embert. Mi a valószínűsége, hogy 7 lány?