- Fourier sorok
- Interpolációs polinomok
- Differenciálegyenletek
- Differenciálegyenletek, izoklinák
- Laplace transzformáció
- Paraméteres görbék
- Síkbeli és térbeli leképezések és mátrixaik
- Vektormezők, görbementi és felületi integrálok
- Kettős és hármas intergrál, térfogati integrál
- Divergencia és rotáció
- Valszám alapok, Kombinatorika
- Teljes valószínűség tétele, Bayes tétel
- Eloszlás, eloszlásfüggvény, sűrűségfüggvény
- Geometriai valószínűség, Binomiális tétel
- Várható érték és szórás
- Markov és Csebisev egyenlőtlenségek
- Nevezetes diszkrét és folytonos eloszlások
- Kétváltozós eloszlások
- Becslések
- Hipotézisvizsgálat
Geometriai valószínűség, Binomiális tétel
Binomiális tétel
\( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \)
Binomiális tétel
Binomiális tétel:
\( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k}b^k = \binom{n}{0} a^n + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n} b^n \)
a) Anna minden reggel 6 és fél 7 között véletlenszerűen érkezik a buszmegállóba. Kétféle buszjárat jó neki, az egyik 15, a másik 20 percenként indul reggel 6 órától kezdve. Mennyi a valószínűsége, hogy Annának nem kell 5 percnél többet várnia a buszmegállóban?
b) Két webáruházból is házhozszállítással rendeltünk. A szállítandó árut mindkét áruházból délután 5 és 6 óra közötti idősávba rendeltük, hogy ne kelljen feleslegesen sokat várakozni. Az áru kipakolása mindkét esetben 10 percet vesz igénybe. Mekkora a valószínűsége, hogy a futárok éppen egy időben fognak érkezni, vagyis az egyik futár még ott lesz, amikor a másik érkezik?
c) Egy raktárhoz 24 órás időtartamon belül véletlen időpontokban két kamion érkezik. Az előbb érkező kamion rögtön megkezdi a rakodást. A rakodás az egyik kamionnál 1, a másiknál 2 órát vesz igénybe. Ha a második kamion akkor érkezik, amikor az elsőre még rakodnak, akkor várakoznia kell a rakodás befejezéséig. Mekkora a valószínűsége, hogy a két kamion közül valamelyiknek várakoznia kell?
a) Egy kör alakú céltáblára lövés érkezik. Mi a valószínűsége, hogy a lövés helye közelebb lesz a kör középpontjához, mint a határvonalához, feltéve, hogy minden lövésünk eltalálja a céltáblát?
b) Egy 10x10 cm-es négyzetre leejtünk három darab 1 cm sugarú érmét. Mennyi a valószínűsége, hogy mindhárom érme a négyzet valamelyik csúcsát le fogja fedni? (Az érméket egymás után dobjuk el.)
a) Mennyi $(a+b)^7$-nél az $a^2b^5$-es tag együtthatója?
b) Mennyi $(a+2)^7$-nél az $a^2$-es tag együtthatója?
c) Mennyi $(x+3)^8$-nál az $x^6$-os tag együtthatója?
a) A (0,5) intervallumot felosztjuk (0,2) és (2,5) részekre. Egymás után véletlenszerűen kiválasztunk két pontot, mekkora valószínűséggel esnek különböző részekbe?
b) Egy 10x10 cm-es négyzetre leejtünk három darab 2 cm sugarú érmét. Mennyi a valószínűsége, hogy legalább két érme nem fogja érinteni a négyzet egyik szélét sem, tehát teljesen a belsejében landol? (Az érméket egymás után dobjuk el.)
a) A (0,1) intervallumban véletlenszerűen kiválasztunk két számot. Mennyi a valószínűsége, hogy az egyik szám több lesz, mint a másik kétszerese?
b) A (0,3), (0,5) szakaszokon véletlenszerűen választunk egy-egy pontot, jelölje x és y . Mennyi a valószínűsége, hogy az x, y, és 2 hosszúságú szakaszokból szerkeszthető háromszög?